Вибрані статті з наукових збірників

Постійне посилання на фондhttps://repositary.knuba.edu.ua/handle/987654321/27

Переглянути

Результат пошуку

Зараз показуємо 1 - 8 з 8
  • Документ
    Thermoelasticity of elastomeric constructions with initial stresses
    (КНУБА, 2020) Bazhenov, V. A.; Kozub, Yu. G.; Solodei, I. I.
    The article presents an algorithm for solving linked problems of thermoelasticity of elastomeric structural elements on the basis of a moment scheme of finite elements. To model the processes of thermoelastic deformation of structures with initial stresses the incremental theory of a deformed solid is used. At each step of deformation, the stiffness matrix is adjusted using an incremental geometric stiffness matrix. The use of triple approximation of displacements, deformations and volume change function allows to consider the weak compressibility of elastomers. The components of the stress tensor are calculated according to the Duhamel-Neumann law. To solve the problem of thermal conductivity, a thermal conductivity matrix considering the boundary conditions on the surface of a finite element is constructed. A sequential approximation algorithm is used to solve the thermoelasticity problem. At each stage of the solution, the characteristics of the thermal stress state are calculated. Based on the obtained components of stress and strain tensors, the intensity of internal heat sources is calculated as the dissipative energy averaged over the load cycle. To calculate the dissipative characteristics of the viscoelastic elastomer the parameters of the Rabotnov’s relaxation nucleus are used. Solving the problem of thermal conductivity considering the function of internal heat sources allows you to specify the heating temperature of the body. At each cycle of the algorithm, the values of the physical and mechanical characteristics of the thermosensitive material are refined. This approach to solving thermoelastic problems is implemented in the computing complex "MIRELA+". Based on the considered approach, the solutions of a number of problems are obtained. The results obtained satisfactorily coincide with the solutions of other authors. Considering the effect of preload and the dependence of physical and mechanical properties of the material on temperature leads to significant adjustments to the calculated values.
  • Документ
    Модифікований метод прямих в задачах термопружності вісесиметричних тіл
    (КНУБА, 2019) Левківський, Д. В.
    Описано застосування модифікованого методу прямих для визначення напружено-деформованого стану пружних вісесиметричних тіл під дією нестаціонарних теплових впливів. Комбінований чисельоно-аналітичний підхід складається є декількох основних етапів. На першому етапі розрахунку визначається розподіл теплових полів у часі. Для цього проекційним методом знижується вимірність по координаті z , а по координатах r та t використовується явна різницева схема. На другому етапі знижується вимірність диференціальних рівнянь та граничних умов термопружності по координаті z проекційним методом. Для цього використовується система локальних базисних функцій. У результаті отримаємо редуковану систему звичайних диференціальних рівнянь, записаних у формі Коші, що залежать від координати r . Дана гранична задача в кожен момент часу розв’язується чисельним методом дискретної ортогоналізації С.К. Годунова. У роботі показано процес зниження вимірності диференціальних рівнянь та виконано загальну постановку початково-граничної задачі.
  • Документ
    Модифікований метод прямих, алгоритм його застосування, можливості та перспективи.
    (КНУБА, 2019) Чибіряков, В. К.; Станкевич, А. М.; Кошевий, О. П.; Левківський, Д. В.; Краснеєва, А. О.; Пошивач, Д. В.; Чубарев, А. Г.; Шорін, О. А.; Янсонс, М. О.; Сович, Ю. В.
    Приведено основні ідеї та можливості модифікованого методу прямих, для розв’язання задач теорії пружності та термопружності. Описана процедура зниження вимірності за допомогою проекційного методу БубноваПетрова. Запропоновано універсальний підхід для врахування граничних умов, узагальнено підхід на області складної геометричної форми. Приведені основні метричні тензори, визначена метрика евклідового простору. Доведено можливості та перспективи запропонованого методу. Даний метод включає в себе два послідовні етапи. На першому етапі, за допомогою проекційного методу, виконується зниження вимірності вихідних диференціальних рівнянь, початкових та граничних умов. Для цього використовується система локально-базисних функцій. На другому етапі редуковані диференціальні рівняння записуються у вигляді звичайних диференціальних рівнянь у формі Коші, які залежать від однієї просторової координати. Редукована система рівнянь та граничних умов розв’язується чисельним методом Гіра. Стаття є оглядовою та включає в себе основні особливості, що виникають при застосуванні модифікованого методу прямих для різних задач теорії пружності, динаміки та термопружності.
  • Документ
    Чисельна реалізація модифікованого методу прямих
    (КНУБА, 2020) Чибіряков, В. К.; Станкевич, А. М.; Кошевий, О. П.; Левківський, Д. В.; Краснеєва, А. О.; Пошивач, Д. В.; Чубарев, А. Г.; Шорін, О. А.; Янсонс, М. О.; Сович, Ю. В.
    Важливим етапом сучасних комбінованих методів є застосування чисельних методів до розв’язання редукованих задач. Саме це було недоліком класичного методу прямих. Чисельний метод використовувався для зниження вимірності (редукції) вихідних рівнянь, у результаті чого редуковані рівняння мали складний вигляд. Це заважало застосуванню сучасних чисельних методів для їх розв’язання. Зниження вимірності вихідних граничних та початковограничних задач для рівнянь теорії пружності та термопружності за допомогою проекційного методу [1] зберігає форму класичних граничних та початково-граничних задач математичної фізики і потребує незначну адаптацію до сучасних чисельних методів [2-6]. Саме цим питанням присвячена дана робота. Застосування модифікованого методу прямих може бути поширено на статичні задачі теорії пружності та стаціонарні задачі теплопровідності [7], на задачі усталених коливань пружних конструкцій, на задачі знаходження динамічних характеристик (частот і форм власних коливань), задач нестаціонарної теплопровідності [7] та нестаціонарних коливань пружних об’єктів. Розглянемо питання адаптації сучасних чисельних методів на розв’язання відповідних редукованих задач. При цьому важливо в якій формі необхідно подавати редуковані рівняння в залежності від їх структури та особливості відповідного чисельного методу.
  • Документ
    Використання МСЕ для обчислення термопружного стану пневматичних шин
    (КНУБА, 2019) Козуб, Ю. Г.; Солодей, І. І.
    В роботі розглянуто суперелементний підхід до формування розрахункових рівнянь метода скінченних елементів для шаруватих конструкцій. Запропонований шаруватий елемент дозволяє на основі тривимірної постановки отримати рішення зв’язаної задачі термопружності конструкцій з еластомірних композитів. Наведено результати чисельних досліджень надвеликогабаритних шин.
  • Документ
    Напружено-деформований стан і рівняння вертикального руху порожнистого тіла обертання – диска під дією електромагнітних полів
    (КНУБА, 2019) Гревцев, О. К.; Селіванова, Н. Ю.
    Розглянута просторова задача теорії термопружності та електромагнітопружності для тіла обертання, зокрема для порожнистого диска змінної товщини, навантаженого осесиметрично температурним полем і об’ємними силами: силами тяжіння, пондеромоторними силами (механічні сили, які діють з боку електромагнітного поля на одиницю об'єму провідного середовища) і силами інерції. В результаті досліджень були отримані диференціальні рівняння для знаходження переміщень і рівняння вертикального руху розглянутого тіла обертання. Визначені умови руху порожнистого диска під дією власного електромагнітного імпульсного поля. Проведені дослідження пружнього стану розглянутого тіла обертання. При цьому показано, що дотичні, осьові і радіальні напруження в тілі порожнистого диска відсутні, тобто дорівнюють нулю. Єдине напруження, яке не дорівнює нулю, є окружне напруження. Показано, що температурне поле з’являється при виникненні пондеромоторних сил, спричинених електромагнітним полем і є результатом деформації тіла обертання порожнистого диска.
  • Документ
    Деформування та дисипативний розігрів гумових вібросейсмоізоляторів
    (КНУБА, 2019) Козуб, Юрій Гордійович; Солодей, Іван Іванович
    При проектуванні пристроїв з еластомірними елементами конструкцій в якості демпферів одним з надважливих завдань є визначення їх напружено-деформованого стану в умовах експлуатаційних навантажень, а також прогнозування їх довговічності на основі різних критеріїв руйнування.Такі конструкції, як правило, працюють в умовах циклічного деформування, при цьому проявляється ефект розсіювання енергії деформації, що призводить до дисипативного розігріву в’язкопружних еластомерних елементів. Розглянуто процеси деформування та дисипативного розігріву гумових вібро- та сейсмоізоляторів. Для розв’язання задачі термомеханіки конструкцій з початковими напруженнями використовується інкрементальна теорія деформованого тіла. Для розв’язання задачі деформування слабостисливих еластомерних елементів використовується моментна схема скінченних елементів з потрійною апроксимацією переміщень, деформацій та функції зміни об’єму. Для розв’язання зв’язаної задачі термопружності використовується метод послідовних наближень.
  • Документ
    Методика розв’язання вісесиметричних задач стаціонарної теплопровідності та термопружності на основі MCCE
    (КНУБА, 2014) Андрієвський, В. П.; Максим’юк, Ю. В.
    Наведені основні розрахункові співвідношення вісесиметричних задач стаціонарної теплопровідності та термопружності в криволінійній системи координат. На базі основних положень моментної схеми скінченних елементів отримано співвідношення для визначення температурних деформацій. Проведені чисельні дослідження для обґрунтування достовірно-сті результатів.