Вибрані статті з наукових збірників
Постійне посилання на фондhttps://repositary.knuba.edu.ua/handle/987654321/27
Переглянути
15 результатів
Результат пошуку
Документ До зниження вимірності і граничних задач теорії пружності за методом прямих(КНУБА, 2010) Станкевич, Анатолій Миколайович; Чибіряков, Валерій Кузьмич; Шкельов, Леонід Тихонович; Левківський, Дмитро ВолодимировичВ даній статті розглядається комбінований метод для розв’язання плоскої задачі теорії пружності (плоска деформація). Він включає ефективний чисельний метод розв’язання крайових задач звичайних диференціальних рівнянь – метод С.К. Годунова, класичний варіант метода «прямих» із застосуванням узагальненого метода Бубнова-Гальоркіна для побудови розрахункових рівнянь. Для наочності виникаючих при цьому перетворень застосовано індексну форму запису, що широко використовується в тензорному численні. Даний метод має великі перспективи для розв’язання задач динаміки та тривимірних задач.Документ Основні положення моментної схеми для напіваналітичного варіанта призматичного скінченного елемента(КНУБА, 2013) Баженов, В. А.; Гуляр, О. І.; Сахаров, О. С.; Шкриль, О. О.Наведені основні співвідношення просторової задачі теорії пружності для призматичних тіл в місцевій криволінійній системі координат. На основі основних положень моментної схеми скінченних елементів отримано співвідношення між переміщеннями, деформаціями і напруженнями.Документ Один варіант методу прямих в задачах динаміки товстих пластин(КНУБА, 2010) Станкевич, А. М.; Чибіряков, В. К.; Шкельов, Л. Т.В роботі пропонується комбінований підхід до розв’язання динамічної задачі теорії пружності в постановці плоскої деформації для товстих пластин з будь-яким опиранням. Двовимірні по просторовим координатам вихідні рівняння редукуються до одновимірних за допомогою розробленого авторами варіанта методу прямих. Подальше чисельне розв’язання задач частот і форм власних коливань виконується з використанням метода дискретної ортогоналізації С.К.Годунова.Документ Дослідження точності визначення осадок грунтових основ у постановці плоскої деформації(КНУБА, 2011) Чибіряков, Валерій Кузьмич; Старовєров, Володимир Сергійович; Кравченко, З. М.Розглянута загальна методика визначення середньої квадратичної похибки (СКП) величин осадок ґрунтових масивів, від дії навантаження, через СКП фізико-механічних характеристик ґрунтової основи.Документ Частоти власних коливань прямокутної шарнірно- обпертої пластини. Повідомлення 1: постановка та методика розв’язання задачі(КНУБА, 2013) Жупаненко, І. В.; Чибіряков, В. К.Розглядається задача визначення частот власних коливань прямокутної шарнірно-обпертої пластини сталої товщини. В рамках моделі лінійної просторової теорії пружності ізотропного тіла запропоновано розв’язок задачі на основі узагальненого методу скінченних інтегральних перетворень.Документ Про підвищення точності узагальненого метода прямих(КНУБА, 2014) Чибіряков, В. К.; Станкевич, А. М.; Левківський, Д. В.; Мельничук, В. Ф.У даній роботі запропоновано для зниження вимірності диференціальних рівнянь теорії пружності використовувати узагальнений метод прямих, в основу якого покладено метод прямих в комбінації з проекційним методом Бубнова-Гальоркіна-Петрова. В якості базисних функцій використовуються локальні функції. Досліджена точність методу в залежності від виду базисних функцій. Розглянуто 3 варіанти функцій: лінійні, кубічні сплайни та квадрати косинусів.Документ Особливості застосування методу ліній для зниження вимірності диференціальних рівнянь теорії пружності в циліндричній системі координат(КНУБА, 2018) Левківський, Д. В.; Янсонс, М. О.При зниженні вимірності диференціальних рівнянь теорії пружності перевага надається чисельним методам. Головну позицію при цьому займає метод скінченних елементів, який поглинув у себе велику частину існуючих математичних методів та підходів до розрахунку просторових конструкцій. У даній роботі запропоновано новий підхід до розв’язання диференціальних рівнянь, побудований на методі прямих. Даний метод автори називають модифікованим методом ліній, оскільки класична різницева схема замінена проекційним методом Бубнова-Петрова. Метод застосований для об’єктів, які мають циліндричну форму. Показані варіанти розбиття об’єкта лініями.Документ Модифікований метод прямих, алгоритм його застосування, можливості та перспективи.(КНУБА, 2019) Чибіряков, В. К.; Станкевич, А. М.; Кошевий, О. П.; Левківський, Д. В.; Краснеєва, А. О.; Пошивач, Д. В.; Чубарев, А. Г.; Шорін, О. А.; Янсонс, М. О.; Сович, Ю. В.Приведено основні ідеї та можливості модифікованого методу прямих, для розв’язання задач теорії пружності та термопружності. Описана процедура зниження вимірності за допомогою проекційного методу БубноваПетрова. Запропоновано універсальний підхід для врахування граничних умов, узагальнено підхід на області складної геометричної форми. Приведені основні метричні тензори, визначена метрика евклідового простору. Доведено можливості та перспективи запропонованого методу. Даний метод включає в себе два послідовні етапи. На першому етапі, за допомогою проекційного методу, виконується зниження вимірності вихідних диференціальних рівнянь, початкових та граничних умов. Для цього використовується система локально-базисних функцій. На другому етапі редуковані диференціальні рівняння записуються у вигляді звичайних диференціальних рівнянь у формі Коші, які залежать від однієї просторової координати. Редукована система рівнянь та граничних умов розв’язується чисельним методом Гіра. Стаття є оглядовою та включає в себе основні особливості, що виникають при застосуванні модифікованого методу прямих для різних задач теорії пружності, динаміки та термопружності.Документ Врахування стану ґрунтів при визначенні напружень в основі фундаментів(КНУБА, 2007) Цимбал, С. Й.; Богославець, Н. М.; Шейхназарі, Х. Р.Наведено аналітичне вирішення щодо визначення характеру розподілу напружень в основі фундаментів з урахуванням стану ґрунтів. Отримані результати розподілу напружень в основі стовпчастих фундаментів порівнюються з напруженнями визначеними для ізотропного середовища.Документ Методика розв’язання задачі про власні коливання пластин обертання змінної товщини(КНУБА, 2010) Чибіряков, В. К.; Жупаненко, І. В.Запропоновано методику розв’язання задачі про власні коливання пластин обертання змінної товщини, що реалізує комбінований двох-етапний чисельно-аналітичний підхід. Аналітичний етап розрахунку полягає в зниженні вимірності вихідних співвідношень динамічної задачі теорії пружності шляхом застосування узагальненого методу скінчених інтегральних перетворень по поперечній координаті та методу Фур’є по коловій координаті. Для чисельного розв’язання редукованої одновимірної задачі пропонується два альтернативних підходи, ефективність та збіжність яких перевірена при розв’язанні тестових задач.