Містобудування та територіальне планування

Постійне посилання на фондhttps://repositary.knuba.edu.ua/handle/987654321/160

Переглянути

Результат пошуку

Зараз показуємо 1 - 9 з 9
  • Документ
    Один варіант методу прямих в задачах динаміки товстих пластин
    (КНУБА, 2010) Станкевич, А. М.; Чибіряков, В. К.; Шкельов, Л. Т.
    В роботі пропонується комбінований підхід до розв’язання динамічної задачі теорії пружності в постановці плоскої деформації для товстих пластин з будь-яким опиранням. Двовимірні по просторовим координатам вихідні рівняння редукуються до одновимірних за допомогою розробленого авторами варіанта методу прямих. Подальше чисельне розв’язання задач частот і форм власних коливань виконується з використанням метода дискретної ортогоналізації С.К.Годунова.
  • Документ
    Дискретно-континуальна модель для розрахунку товстих пластин на динамічні впливи
    (КНУБА, 2014) Чибіряков, В. К.; Станкевич, А. М.; Левківський, Д. В.
    Розглядається дискретно-континуальна модель динамічного розрахунку товстих пластин, побудована на основі методу сил. Зниження вимірності виконується методом “прямих” у поєднанні з методом Бубнова-Гальоркіна Петрова. Для чисельної реалізації та формування матриці впливу використовується дискретна ортогоналізація С.К.Годунова, власні числа та вектори матриць визначаються методом Якобі.
  • Документ
    Частоти власних коливань прямокутної шарнірно- обпертої пластини. Повідомлення 1: постановка та методика розв’язання задачі
    (КНУБА, 2013) Жупаненко, І. В.; Чибіряков, В. К.
    Розглядається задача визначення частот власних коливань прямокутної шарнірно-обпертої пластини сталої товщини. В рамках моделі лінійної просторової теорії пружності ізотропного тіла запропоновано розв’язок задачі на основі узагальненого методу скінченних інтегральних перетворень.
  • Документ
    Динамічний напружено-деформований стан реактивної штаби атракціону вільного падіння
    (КНУБА, 2013) Жупаненко, І. В.; Чибіряков, В. К.; Білик, С. І.
    Досліджено динамічний напружено-деформований стан одного варіанту конструктивного вирішення реактивної штаби, що є відповідальною складовою частиною системи динамічного гальмування атракціонів вільного падіння.
  • Документ
    Частоти власних коливань прямокутної шарнірно-обпертої пластини. Повідомлення 2: Чисельні експерименти
    (КНУБА, 2013) Жупаненко, І. В.; Чибіряков, В. К.
    Розглядається задача визначення частот власних коливань прямокутної шарнірно-обпертої пластини сталої товщини. В рамках моделі лінійної просторової теорії пружності ізотропного тіла запропоновано розв’язок задачі на основі узагальненого методу скінченних інтегральних перетворень.
  • Документ
    Про підвищення точності узагальненого метода прямих
    (КНУБА, 2014) Чибіряков, В. К.; Станкевич, А. М.; Левківський, Д. В.; Мельничук, В. Ф.
    У даній роботі запропоновано для зниження вимірності диференціальних рівнянь теорії пружності використовувати узагальнений метод прямих, в основу якого покладено метод прямих в комбінації з проекційним методом Бубнова-Гальоркіна-Петрова. В якості базисних функцій використовуються локальні функції. Досліджена точність методу в залежності від виду базисних функцій. Розглянуто 3 варіанти функцій: лінійні, кубічні сплайни та квадрати косинусів.
  • Документ
    Метод прямих у задачах стаціонарної теплопровідності для областей неканічної форми
    (КНУБА, 2017) Чибіряков, В. К.; Станкевич, А. М.; Краснєєва, А. О.
    Важливою особливістю методу прямих для розв'язування крайових задач математичної фізики є можливість розв'язувати задачі, визначені в області неканонічної форми. Традиційно при цьому використовувались аналітичні методи. В даній роботі пропонується методика розв'язування задач теплопровідності в областях неканонічної форми на основі чисельних методів, що значно розширює можливості методу прямих.
  • Документ
    Модифікований метод прямих, алгоритм його застосування, можливості та перспективи.
    (КНУБА, 2019) Чибіряков, В. К.; Станкевич, А. М.; Кошевий, О. П.; Левківський, Д. В.; Краснеєва, А. О.; Пошивач, Д. В.; Чубарев, А. Г.; Шорін, О. А.; Янсонс, М. О.; Сович, Ю. В.
    Приведено основні ідеї та можливості модифікованого методу прямих, для розв’язання задач теорії пружності та термопружності. Описана процедура зниження вимірності за допомогою проекційного методу БубноваПетрова. Запропоновано універсальний підхід для врахування граничних умов, узагальнено підхід на області складної геометричної форми. Приведені основні метричні тензори, визначена метрика евклідового простору. Доведено можливості та перспективи запропонованого методу. Даний метод включає в себе два послідовні етапи. На першому етапі, за допомогою проекційного методу, виконується зниження вимірності вихідних диференціальних рівнянь, початкових та граничних умов. Для цього використовується система локально-базисних функцій. На другому етапі редуковані диференціальні рівняння записуються у вигляді звичайних диференціальних рівнянь у формі Коші, які залежать від однієї просторової координати. Редукована система рівнянь та граничних умов розв’язується чисельним методом Гіра. Стаття є оглядовою та включає в себе основні особливості, що виникають при застосуванні модифікованого методу прямих для різних задач теорії пружності, динаміки та термопружності.
  • Документ
    Чисельна реалізація модифікованого методу прямих
    (КНУБА, 2020) Чибіряков, В. К.; Станкевич, А. М.; Кошевий, О. П.; Левківський, Д. В.; Краснеєва, А. О.; Пошивач, Д. В.; Чубарев, А. Г.; Шорін, О. А.; Янсонс, М. О.; Сович, Ю. В.
    Важливим етапом сучасних комбінованих методів є застосування чисельних методів до розв’язання редукованих задач. Саме це було недоліком класичного методу прямих. Чисельний метод використовувався для зниження вимірності (редукції) вихідних рівнянь, у результаті чого редуковані рівняння мали складний вигляд. Це заважало застосуванню сучасних чисельних методів для їх розв’язання. Зниження вимірності вихідних граничних та початковограничних задач для рівнянь теорії пружності та термопружності за допомогою проекційного методу [1] зберігає форму класичних граничних та початково-граничних задач математичної фізики і потребує незначну адаптацію до сучасних чисельних методів [2-6]. Саме цим питанням присвячена дана робота. Застосування модифікованого методу прямих може бути поширено на статичні задачі теорії пружності та стаціонарні задачі теплопровідності [7], на задачі усталених коливань пружних конструкцій, на задачі знаходження динамічних характеристик (частот і форм власних коливань), задач нестаціонарної теплопровідності [7] та нестаціонарних коливань пружних об’єктів. Розглянемо питання адаптації сучасних чисельних методів на розв’язання відповідних редукованих задач. При цьому важливо в якій формі необхідно подавати редуковані рівняння в залежності від їх структури та особливості відповідного чисельного методу.