Вибрані статті з наукових збірників

Постійне посилання на фондhttps://repositary.knuba.edu.ua/handle/987654321/27

Переглянути

Результат пошуку

Зараз показуємо 1 - 10 з 18
  • Документ
    Визначення напружено-деформованого стану пластини методом прямих з використанням рядів Фур`є
    (КНУБА, 2013) Левківський, Д. В.
    В статті розглядається плоска деформація товстої пластини. Для зниження вимірності вихідних диференціальних рівнянь використовується метод прямих у поєднанні з методом Бубнова-Гальоркіна-Петрова. При шарнірному закріпленні по торцевих площинах x = 0 , x l = можливе використання рядів Фур`є по координаті x . Це зводить вихідну систему редукованих диференціальних рівнянь до системи алгебраїчних рівнянь.
  • Документ
    Три варіанти редукції рівнянь плоскої задачі теорії пружності методом “прямих”
    (КНУБА, 2013) Станкевич, А. М.; Левківський, Д. В.
    Для зниження вимірності вихідних рівнянь плоскої задачі теорії пружності у роботі запропоновано застосовувати класичний варіант метода “прямих” у поєднанні з узагальненим методом Бубнова-Гальоркіна-Петрова. Як координатні функції використовуються кусково-лінійні фінітні функції. На основі даного підходу розроблено 3 варіанти редукованих диференціальних рівнянь: рівняння в моментах, коефіцієнтах, та рівняння мішаного типу. Отримані рівняння пропонується розв’язувати чисельно, за допомогою метода дискретної ортогоналізації С. К. Годунова. На конкретному прикладі показана збіжність отриманих результатів за трьома підходами.
  • Документ
    Проблема забезпечення надійності дорожнього покриття
    (КНУБА, 2010) Рейцен, Є. О.; Левківський, Д. В.
    В даній роботі розглянуто проблему забезпечення надійності дорожнього покриття, так як в умовах безперервного зростання інтенсивності руху, збільшенні осьового навантаження, температурного навантаження, асфальтобетон працює на межі своїх можливостей. Роботи, пов’язані з ремонтом і будівництвом вулиць і доріг, вимагають великих витрат, тому потрібно створити відповідну раціональну модель дорожнього покриття, включивши всі аспекти, пов’язані з проектуванням, будівництвом та експлуатацією вулиць і доріг. Основні способи підвищення надійності конструкцій нежорстких дорожніх одягів можна поділити на п’ять груп: матеріалознавчі, технологічні, конструктивні, експлуатаційні, економіко-організаційні.
  • Документ
    Дискретно-континуальна модель для розрахунку товстих пластин на динамічні впливи
    (КНУБА, 2014) Чибіряков, В. К.; Станкевич, А. М.; Левківський, Д. В.
    Розглядається дискретно-континуальна модель динамічного розрахунку товстих пластин, побудована на основі методу сил. Зниження вимірності виконується методом “прямих” у поєднанні з методом Бубнова-Гальоркіна Петрова. Для чисельної реалізації та формування матриці впливу використовується дискретна ортогоналізація С.К.Годунова, власні числа та вектори матриць визначаються методом Якобі.
  • Документ
    Розрахунок балки-стінки методом “прямих”
    (КНУБА, 2013) Станкевич, А. М.; Левківський, Д. В.; Тімофєєв, А. С.
    Розглядається методика визначення напружено-деформованого стану балки-стінки за допомогою комбінації метода «прямих» та проекційного метода Бубнова-Гальоркіна-Петрова. Для чисельного розв’язання редукованих рівнянь задачі застосовують метод дискретної ортогоналізації С.К.Годунова. На прикладі показано збіжність отриманих результатів з методом скінченних елементів.
  • Документ
    Визначення напружено-деформованого стану двошарової конструкції методом прямих
    (КНУБА, 2013) Левківський, Д. В.
    Розглядаються 2 підходи до моделювання роботи шарової конструкції (неперервно-структурна та дискретно-структурна моделі). Задача розв’язується в постановці плоскої деформації. Для зниження вимірності вихідних рівнянь використовується метод “прямих” у поєднанні з проекційним методом Бубнова-Гальоркіна-Петрова. Проведено аналіз переваг та недоліків кожного з підходів.
  • Документ
    Про підвищення точності узагальненого метода прямих
    (КНУБА, 2014) Чибіряков, В. К.; Станкевич, А. М.; Левківський, Д. В.; Мельничук, В. Ф.
    У даній роботі запропоновано для зниження вимірності диференціальних рівнянь теорії пружності використовувати узагальнений метод прямих, в основу якого покладено метод прямих в комбінації з проекційним методом Бубнова-Гальоркіна-Петрова. В якості базисних функцій використовуються локальні функції. Досліджена точність методу в залежності від виду базисних функцій. Розглянуто 3 варіанти функцій: лінійні, кубічні сплайни та квадрати косинусів.
  • Документ
    Визначення частот і форм власних коливань товстої двошарової пластини
    (КНУБА, 2014) Левківський, Д. В.
    Для визначення частот і форм власних коливань двошарової пластини в постановці плоскої деформації використовується дискретно-континуальна модель. Дана модель побудована на основі методу сил. Зниження вимірності виконується методом “прямих” у поєднанні з проекційним методом Бубнова- Гальоркіна-Петрова. Для чисельної реалізації та формування матриці впливу використовується метод ортогональної прогонки С.К.Годунова. Власні числа та вектори матриці впливу визначаються методом Якобі.
  • Документ
    Дослідження властивостей проекційного методу в задачі згину балки
    (КНУБА, 2016) Левківський, Д. В.; Янсонс, М. О.
    Розглянуто проекційний метод Бубнова-Гальоркіна-Петрова для зниження вимірності диференціальних рівнянь осі зігнутої балки. Для цього використовуються локальні базисні функції. Всі математичні перетворення виконуються у індексній формі. Проведено дослідження збіжності чисельних результатів з точним розв’язкам при різному кроці розбиття для шарнірної балки, навантаженої рівномірно-розподіленим навантаженням. Визначено оптимальний крок розбиття для запропонованого проекційного методу.
  • Документ
    Розрахунок товстої пластини модифікованим методом прямих
    (КНУБА, 2017) Левківський, Д. В.; Янсонс, М. О.
    У даній роботі досліджено напружено деформований стан товстої квадратної пластини. Зниження вимірності вихідних рівнянь теорії пружності виконується по двох просторових координатах за допомогою проекційного методу Бубнова-Петрова. У результаті утворюється замкнута система редукованих диференціальних рівнянь першого порядку, яка разом з граничними умовами, розв’язується методом дискретної ортогоналізації С.К. Годунова. Отримані результати були порівняні з відомими розв’язками. Акцент у роботі ставиться на обробку результатів.