Будівництво та цивільна інженерія
Постійний URI для цього зібранняhttps://repositary.knuba.edu.ua/handle/987654321/1219
Переглянути
Документ Corrosion Resistance of Polyester Powder Coatings Using Fillers of Various Chemical Nature(2020) Gots, Vladimir; Lastivka, Oles; Berdnyk, Oksana; Tomin, Oleksandr; Shilyuk, PetroIn the article the effect of fillers of various chemical nature on the corrosion resistance of polyester powder coatings i terms of flaking widths and corrosion expansion widths in accordance with DSTU ISO 4628-8: 2012 was reviewed. According to the results of studies, the effectiveness of the use of fillers to increase the corrosion resistance of the powder coating varies depending on the average particle size and crystalline form of the filler was found. As a rule, in order to receive a powder coating based decorative coating you should apply only one layer of paint, while liquid coatings require applying several layers; this increases the time of coating production. The powder coating can be easily utilized and recycled, thus the economic feasibility of production increasesДокумент Intumescent fireproof coatintgs based on zeolite-like cement matrices(Wiley, 2023-09) Krivenko Pavel; Guzii Sergii; Rudenko Igor; Konstantynovskyi OleksandrConcrete and reinforced concrete building structures (for example, such as tunnels) lose carrying ability in case of high‐temperature fire action. The aim of the research is to study the prevention of reinforced concrete structures (for example, such as tunnels) under fire action in case of using the proposed coating based on the alkaline aluminosilicate binder, which would not consist of organic components dangerous to health. The ratios between constituent oxides in the binder which ensure the ability to bloat the coating under fire action were determined. The performance properties of developed fire protective coating were defined after artificial aging (cycles of alternate drying and cooling) and fire action: bloating factor ‐ 2.0…5.1, adhesion strength ‐ 6.6…8.0 MPa, compressive strength ‐ 2.3…4.5 MPa, cohesive strength of 1.2…1.5 MPa, thermal conductivity coefficient ‐ 0.042…0.066 W/m‐°C, total porosity ‐ 92…97 %. The temperature at which the coating starts to bloat = 200…250 °C has been developed. The results of the test held in the open air suggested drawing a conclusion that with a coating thickness of 6 mm protection of the reinforced concrete from fragile fracture and from plastic deformations in the metal of the reinforcement they provided under fire exposure for a period of 3 hours.