Вибрані статті з наукових збірників
Постійне посилання на фондhttps://repositary.knuba.edu.ua/handle/987654321/27
Переглянути
5 результатів
Результат пошуку
Документ Визначення потреби в абразивних інструментах в будівельно-монтажних організаціях(КНУБА, 2011) Абрашкевич, Ю. Д.; Марченко, О. А.; Човнюк, О. В.В статті наведено залежності, які дозволили розробити методику визначення потреби в абразивних армованих кругах для різання і зачистки металу.Документ Дослідження теплових процесів у абразивному армованому крузі при різанні металопрокату(КНУБА, 2017) Абрашкевич, Ю. Д.; Мачишин, Г. М.; Човнюк, О.У роботі викладені результати експериментальних досліджень з визначення температури в зоні контакту і зв’язці абразивного армованого круга при різанні металопрокату.Документ Вплив теплофізичних властивостей абразивного армованого круга на його зносостійкість(КНУБА, 2018) Абрашкевич, Ю.; Мачишин, Г. М.; Човнюк, О.Щорічне споживання абразивних армованих кругів обраховується сотнями мільйонів штук. Круги є складною композицією, яка складається із абразивного зерна, що закріплене в полімерній матриці. В процесі аналітичних досліджень встановлено, що зносостійкість кругів в основному визначається теплофізичними показниками бакелітової зв’язки. Визначення кореляційного зв’язку між зносостійкістю абразивного армованого круга та теплофізичними показниками полімерної матриці дозволить підвищити його зносостійкість та експлуатаційні показники. Визначення температури, що виникає в процесі різання чи зачищення є складною задачею. Її вирішення дозволить змінювати теплофізичні параметри складових круга і, як наслідок, стане можливим керувати тепловими процесами та зносостійкістю абразивних відрізних і зачисних кругів армованих склосіткою. Дослідження проводилися експериментальним шляхом з реєстрацією питомої теплоємності та теплопровідності, що залежать від матриці круга. Визначався вплив армувальної склосітки на теплофізичні показники. Встановлено, що скосітка суттєво не впливає на теплопровідність круга, а також, що між зносостійкістю абразивного армованого круга та коефіцієнтом температуропровідності існує кореляційний зв'язок. Зі збільшенням коефіцієнта температуропровідності на 50% коефіцієнт шліфування збільшується на 20%. Одним із важливих напрямків підвищення зносостійкості абразивних армованих кругів є введення в їх склад модифікаторів, які дозволяють підвищити теплопровідність і одночасно знизити теплоємність інструмента. Це може бути досягнуто шляхом уведення домішок як у зв’язуюче, так і в армуючу склосітку круга, а також шляхом металізації абразивних зерен та застосуванням нових зв’язуючих з підвищеними теплофізичними властивостями.Документ Силовий аналіз ручних кутових шліфувальних машин при роботі з зачисними абразивними кругами(КНУБА, 2018) Абрашкевич, Ю. Д.; Машичин, Г. М.; Марченко, О. А.Для виконання зачисних операцій при проведенні будівельно-монтажних робіт широке застосування отримали різноманітні робочі органи з приводом від кутових шліфувальних машин (КШМ). Такі машини відносяться до найбільш розповсюджених із різновидів ручного інструменту. Багатофункціональність та універсальність цих машин в поєднанні з правильним підбором потрібного абразивного робочого інструменту дозволяє значно прискорити та полегшити ви¬конання зачисних і шліфувальних операцій з досягненням необхідного ефекту. Ринок КШМ та робочих органів до них представлений великою кількістю різних брен дів та конструкцій у широкому номенклатурному і ціновому діапазоні. Враховуючи складність роботи з такими машинами при проведенні зачисних і шліфувальних робіт та її залежність від фізичних даних та навичок оператора, поряд з технологічними та економічними показниками, повинні також враховуватись ергономічні показники. Серед них крім вібраційної, шумової і інших характеристик слід виділити залежність навантажень на рукоятках машини від зусиль на робочому органі, маси машини, її конструктивних параметрів та зміни положення рукоятки відносно машини. Для дослідження навантаження оператора при проведенні зачисних та шліфувальних ро¬біт розроблена математична модель роботи КШМ з зачисними кругами. У роботі наведені результати досліджень впливу конструктивних та режимних параметрів ручних кутових шліфувальних машин на завантаженість оператора при роботі з абразивними робочими органами.Документ Технологія виготовлення абразивних армованих кругів для різання кам’яних матеріалів(КНУБА, 2018) Абрашкевич, Ю. Д.; Мачишин, Г. М.; Щербина, Т.; Марченко, О. А.абразивних армованих кругівпредставлений широкою номенклатурою та великою кількістю виробників. Круги масово застосовуються при виконанні будівельномонтажних робіт для різання металевої продукції. Різання високоабразивних вогнетривів та штучних і природніх гірських порід міцністю до 60 МПа на будівельному майданчику виконується переважно машинами з дисковим алмазним робочим органом. Отже, дослідження механізму роботи абразивного армованого круга при різанні кам’яних матеріалів в залежності від умов його роботи з обезпиленням водою є актуальним питанням. В ході досліджень встановлено, що абразивний армований круг в процесі різання без охолодження має термомеханічне зношування. Це підтверджується вирішенням диференційного рівняння та визначенням глибини проникнення температури в круг. Встановлено необхідність уведення в полімерну матрицю круга модифікаторів, які дозволять підвищити теплостійкість круга і, відповідно, зменшити його термомеханічне зношування. Підвищення робочої температури руйнування зв’язки круга дозволяє абразивним зернам довше утримуватися в матриці круга. Обезпилення водою дозволяє не тільки прибрати із робочої зони пил, а й додатково охолодити круг, що також збільшує його ресурс. Розроблена технологія виготовлення абразивних армованих кругів, де як модифікатор використовується водний розчин полівінілово¬го спирту у кількості 13,7%. Подальші експериментальні дослідження виготовлених кругів при різанні високоабразивних вогнетривів та штучних і природних гірських порід міцністю до 60 МПа підтвердили правильність отриманих результатів досліджень. Ресурс круга зріс за рахунок покращення самозаточування. Зменшилася потужність привідного двигуна, що дозволило зменшити масу машини. Екологічні умови оператора поліпшилися за рахунок зменшення пилу.