Вип. 93
Постійний URI для цього зібранняhttps://repositary.knuba.edu.ua/handle/987654321/10190
Переглянути
Документ Проведення ефективного прогнозування роботи машин для земляних робіт(КНУБА, 2019) Пелевін, Леонід; Фомін, Анатолій; Горбатюк, Євгеній; Шаленко, ВадимЗемлерийні машини у високорозвинених країнах займає провідне місце серед самохідної та причіпної техніки різного призначення. В основі конструювання такої техніки лежать науково-технічні принципи створення низькоенергоємних технологій і машин для руйнування природних та штучних середовищ (ґрунтів, порід, мулів, залізобетонів, цегли тощо) в різних умовах (наземних – дорожні, оброблення сільськогосподарських земель, інженерно-військовій аварійно-рятувальні роботи, очистка ґрунтів від забруднень, меліорація, створення траншей, каналів, котлованів, окопів, сховищ тощо; підземних – видобування корисних копалин, будівництво тунелів тощо). Земляні роботи належать до найбільш трудомістких процесів будівництва, тому необхідно визначати шляхи вдосконалення конструкцій землерийних машин за допомогою обґрунтованого проведення техніко-економічного зіставлення різних видів зразків машин. Отже, основним завданням роботи є оцінка ефективності землерийних машин по критерію величини виробничого потенціалу, що дозволить більш обґрунтовано проводити техніко- економічне зіставлення різних видів машин. Імовірнісна оцінка ефективності землерийних машин по критерію величини виробничого потенціалу дозволяє більш обґрунтовано проводити техніко-економічне зіставлення зразків машин, а також визначати шляхи вдосконалення їх конструкції. Величина виробничого потенціалу може використовуватися при прогнозуванні річного вироблення, оцінках енергоємності, металоємності, терміну окупності, економічного ефекту впровадження нового зразка або модернізації землерийної машини, а також при виборі умов й аналізі результатів виробничих випробувань землерийних машин.Документ Технологічні умови роботи абразивного інструменту(КНУБА, 2019) Пелевін, Леонід; Мачишин, Григорій; Кузьмінець, МиколаАбразивний інструмент з кожним днем знаходить все більше застосування при виконанні операцій з фінішної абразивної обробки деталей машин, очищення металевих і неметалевих поверхонь від лакофарбових покриттів, іржі та забруднень. Полімер-абразивні щітки здебільшого застосовують у поєднанні з ручними кутовими шліфувальними машинами невеликої потужності. Основною задачею роботи є визначення енергетичних витрат і їх розподіл з метою мінімізації нагріву полімерної матриці та збільшення частки енергії, що витрачається на знімання матеріалу, який підлягає видаленню. При визначенні енергетичних витрат враховувалися наступні показники потужності, а саме: потужність, що передається від абразивного зерна, яким наповнене волокно, при контакті з оброблюваною поверхнею; потужність руйнування поверхні, що обробляється; потужність теплових втрат енергії при терті волокна об поверхню матеріалу, який обробляється. Враховуючи наведені показники потужності складено умову балансу енергії. Це дозволило визначити коефіцієнт корисної дії абразивного інструменту та встановити, які фактори призводять до його підвищення. А також, отримати залежність, що описує загальний перепад температур, на які нагрівається волокно щітки за весь час її роботи. Для визначення ймовірності безвідмовної роботи машин з полімер-абразивними щітками було складено структурну схему, яка включає два критерії: ймовірність руйнування волокна від втоми та ймовірність руйнування волокна від контактних навантажень. Складена схема розглядалась із вірогідністю безвідмовної роботи інструмента по кожному з цих критеріїв. Розв’язком системи ймовірності безвідмовної роботи щітки є залежність, що дозволяє визначити термін служби щітки. Таким чином, на будівельному або монтажному майданчику з'являється можливість розрахувати число полімерно-абразивних щіток для забезпечення безперебійного виконання робіт. Зростання коефіцієнту корисної дії забезпечують наступні показники, а саме: зменшення питомої теплоємності, маси волокна та перепаду температур волокна за один оберт щітки. А також зростання кількості абразиву, межі міцності й перетину волокна та довжина дуги контакту. Визначення ймовірності безвідмовної роботи ручних та переносних машин з полімерно-абразивними щітками дозволяє визначати ресурс їх роботи.