Вип. 70

Постійний URI для цього зібранняhttps://repositary.knuba.edu.ua/handle/987654321/5932

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Документ
    Модифікований метод прямих в задачах термопружності вісесиметричних тіл
    (КНУБА, 2019) Левківський, Д. В.
    Описано застосування модифікованого методу прямих для визначення напружено-деформованого стану пружних вісесиметричних тіл під дією нестаціонарних теплових впливів. Комбінований чисельоно-аналітичний підхід складається є декількох основних етапів. На першому етапі розрахунку визначається розподіл теплових полів у часі. Для цього проекційним методом знижується вимірність по координаті z , а по координатах r та t використовується явна різницева схема. На другому етапі знижується вимірність диференціальних рівнянь та граничних умов термопружності по координаті z проекційним методом. Для цього використовується система локальних базисних функцій. У результаті отримаємо редуковану систему звичайних диференціальних рівнянь, записаних у формі Коші, що залежать від координати r . Дана гранична задача в кожен момент часу розв’язується чисельним методом дискретної ортогоналізації С.К. Годунова. У роботі показано процес зниження вимірності диференціальних рівнянь та виконано загальну постановку початково-граничної задачі.
  • Документ
    Модифікований метод прямих, алгоритм його застосування, можливості та перспективи.
    (КНУБА, 2019) Чибіряков, В. К.; Станкевич, А. М.; Кошевий, О. П.; Левківський, Д. В.; Краснеєва, А. О.; Пошивач, Д. В.; Чубарев, А. Г.; Шорін, О. А.; Янсонс, М. О.; Сович, Ю. В.
    Приведено основні ідеї та можливості модифікованого методу прямих, для розв’язання задач теорії пружності та термопружності. Описана процедура зниження вимірності за допомогою проекційного методу БубноваПетрова. Запропоновано універсальний підхід для врахування граничних умов, узагальнено підхід на області складної геометричної форми. Приведені основні метричні тензори, визначена метрика евклідового простору. Доведено можливості та перспективи запропонованого методу. Даний метод включає в себе два послідовні етапи. На першому етапі, за допомогою проекційного методу, виконується зниження вимірності вихідних диференціальних рівнянь, початкових та граничних умов. Для цього використовується система локально-базисних функцій. На другому етапі редуковані диференціальні рівняння записуються у вигляді звичайних диференціальних рівнянь у формі Коші, які залежать від однієї просторової координати. Редукована система рівнянь та граничних умов розв’язується чисельним методом Гіра. Стаття є оглядовою та включає в себе основні особливості, що виникають при застосуванні модифікованого методу прямих для різних задач теорії пружності, динаміки та термопружності.