Вип. 88

Постійний URI для цього зібранняhttps://repositary.knuba.edu.ua/handle/987654321/222

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Документ
    Метод прямих у просторовій задачі теорії пружності
    (КНУБА, 2011) Станкевич, А. М.; Чибіряков, В. К.; Шкельов, Л. Т.
    Методика зниження вимірності рівнянь плоскої задачі теорії пружності з подальшим розв’язанням одновимірної граничної задачі методом С.К. Годунова, запропонована в роботі [1], поширюється на тривимірну задачу. Всі перетворення суттєво використовують індексну форму запису,термінологію та основні формальні принципи тензорного числення. Отримано систему розв’язувальних одновимірних рівнянь та граничні умови загального вигляду. Поставлена гранична задача розв’язується високоефективним чисельним методом дискретної ортогоналізації С.К. Годунова.
  • Документ
    Збіжність першого та другого варіантів методу збурення форми границі в просторових задачах теорії пружності для тіл, обмежених неканонічними поверхнями
    (КНУБА, 2011) Чорнописький, Д. Г.
    Отримано розклад точного розв’язку осесиметричної задачі пружності про рівномірний розтяг-стиск середовища з еліпсоїдальною порожниною по степенях параметра, що характеризує її ексцентриситет. При цьому коефіцієнти розкладу точного розв’язку задачі в точності співпали з першими трьома коефіцієнтами при степенях параметра наближеного розв’язку, отриманого 1-им варіантом методу збурення форми границі, які визначають величину концентрації напружень на поверхні порожнини. Виконано порівняння числових даних коефіцієнтів концентрації напружень точного розв’язку задачі Ламе для оболонок, обмежених еліпсоїдальними поверхнями або близькими до них, з їх величиною отриманою згідно з наближеними розв’язками 1-го і 2-го варіантів методу збурення форми границі.