Управління розвитком складних систем
Постійне посилання на фондhttps://repositary.knuba.edu.ua/handle/987654321/326
Переглянути
2 результатів
Результат пошуку
Документ Сравнительние модели в условиях неопределенности для решения задач управления(КНУБА, 2016) Белощицкий, Андрей Александрович; Минаева, Юлия Ивановна; Филимонов, Георгий АлександровичНа основании формальных процедур рассматриваются представления универсального подмножества, имеющего свойства нечеткого множества. Поставленная задача состоит в том, чтобы показать объективное существование в составе универсального подмножества такого подмножества упорядоченных пар, которое обладает свойствами нечеткого множества. Такое подмножество в свою очередь позволяет определить нейтральную позицию, по отношению к которой определяется роль и значимость (компаративность) эвристически назначенного нечеткого множества. Установлено, что нечеткое множество, как объект, отображает человеческое представление о физической сущности и таких представлений может быть несколько.Документ Тензорные модели интервальной математики в основе метода решения задач управления в условиях неопределенности(КНУБА, 2017) Минаев, Юрий Николаевич; Минаева, Юлия Ивановна; Филимонова, Оксана Юрьевна; Филимонов, Георгий АлександровичРассматрено представление интервала в виде тензорной модели с последующей тензорной декомпозицией и формированием подмножества упорядоченных пар (псевдонечеткое множество вида x n x {x pm }1 ,pm ®[0,1] – псевдоФП). Аналогичные нечеткому множеству псевдомодели ФП обладают расширенным свойством функции принадлежности Σ = ( ) pm = i 1,n x 2 1. Предложено нечеткий интервал определять как подмножество упорядоченных пар (псевдонечеткое множество) (ПмУП), наиболее близкое по унитарной норме к исходному (четкому) интервалу. Сформулированы алгоритмы выполнения арифметических операций над интервалами на уровне тензорных моделей. Приведены примеры, показывающие эффективность предложенных методов и моделей.