Вибрані статті з наукових збірників

Постійне посилання на фондhttps://repositary.knuba.edu.ua/handle/987654321/27

Переглянути

Результат пошуку

Зараз показуємо 1 - 2 з 2
  • Документ
    Універсальний призматичний скінчений елемент загального типу для фізично і геометрично нелінійних задач деформування призматичних тіл
    (КНУБА, 2020) Гуляр, Олександр Іванович; Максим’юк, Юрій Всеволодович; Козак, Андрій Анатолійович; Максим’юк, Олександр
    При розробці нових скінчених елементів (СЕ) в рамках напіваналітичного методу скінчених елементів (НМСЕ), визнача- льним фактором для досягнення високої ефективності їх застосування є вибір системи координатних функцій і методика виведення матриці жорсткості. Апроксимація переміщення уздовж координати розкладу здійснювалася змішаною системою координатних функцій, перші два члена якої належать поліномами Лагранжа, інші - Міхліна. На основі високо ефективної моментной схеми скінчених елементів (МССЕ) побудовані розв’язувальні співвідношення для універсального призматичного СЕ загального типу, який дозволяє визначати напруженодеформований стан (НДС) для фізично і геометрично нелійних задач призматичних тіл. Об'єкти виділеного класу використовуються в якості природних конструкцій, вузлів і деталей в будівництві і різних галузях машинобудування. Наприклад, до них відносяться фундаменти промислових і цивільних будівель, елементи перекриттів і покриттів, арочні греб- лі, кронштейни, різці, зуби косозубих коліс та ін. Деформування розглянутих конструкцій відбувається під дією силових і температурних факторів, причому, через наявність істотних перепадів температур можлива зміна фізикомеханічних характеристик матеріалу. На сучасному рівні розвитку техніки і технології в окремих елементах конструкцій допускається виникнення пластичних деформацій. Для ряду деталей в процесі експлуатації і виготовлення розвиток пластичних супроводжується істотною зміною первісної форми. Це характерно для процесів обробки металів тиском, наприклад, при виготовленні штампових кубиків, протяжці смуг. Подальше вдосконалення конструктивних рішень при розробці відповідальних вузлів і технологічних процесів багато в чому залежить від повноти та достовірності про особливості змінини напружено-деформованого стану в процесі навантаження. У зв'язку з цим розробка методів дослідження виділеного класу об'єктів є актуальною проблемою.
  • Документ
    Some aspects of modeling nonlinear behaviour of reinforced concrete
    (КНУБА, 2018) Barabash, M.
    The paper deals with some aspects of modelling the structures’ behaviour: the ‘engineering nonlinearity’ method; determining stresses on the basis of nonlinear dependences ‘stress-strain’. The ‘engineering nonlinearity’ method enables you to indirectly consider physical nonlinearity while computing by the standard method. The ‘engineering nonlinearity’ method enables you to consider physically nonlinear behavior of reinforced concrete section by iteration and step-type method. The method makes it possible to determine the stiffness parameters of the section. These parameters may be reduced because of the crack propagation, plastic strain in concrete and reinforcement. Concept of the method is described. Suggested method ‘engineering nonlinearity’ enables the user to consider stiffness distribution more accurately. This method is almost similar to standard methods of linear analysis, that is, it is possible to carry out analysis on all types of loads, compose DCF and DCL, analyse reinforcement. Comparison study for peculiar features of ‘Engineering nonlinearity’ method is performed. Analysis results for the test problem (based on engineering nonlinearity) are provided. Analysis results for the test problem shows some redistribution of forces and convergence of results obtained in ‘engineering nonlinearity’ method and in analysis with account of physical nonlinearity. This approach makes it possible to use the ‘engineering nonlinearity’ method for computing and modelling the erection process, analysis of panel buildings (platform joints), etc. The ‘Cross-section Design Toolkit’ module supports nonlinear analysis for a certain set of forces. The proposed methods for modelling and analysis of structures with account of their life cycle enable us to find out dangerous tendencies at the design, erection and further maintenance stage of the structure and to prevent the possible destruction both for separate structural elements and the object as a whole.