Містобудування та територіальне планування

Постійне посилання на фондhttps://repositary.knuba.edu.ua/handle/987654321/160

Переглянути

Результат пошуку

Зараз показуємо 1 - 2 з 2
  • Документ
    Розрахунок товстої пластини модифікованим методом прямих
    (КНУБА, 2017) Левківський, Д. В.; Янсонс, М. О.
    У даній роботі досліджено напружено деформований стан товстої квадратної пластини. Зниження вимірності вихідних рівнянь теорії пружності виконується по двох просторових координатах за допомогою проекційного методу Бубнова-Петрова. У результаті утворюється замкнута система редукованих диференціальних рівнянь першого порядку, яка разом з граничними умовами, розв’язується методом дискретної ортогоналізації С.К. Годунова. Отримані результати були порівняні з відомими розв’язками. Акцент у роботі ставиться на обробку результатів.
  • Документ
    Модифікований метод прямих, алгоритм його застосування, можливості та перспективи.
    (КНУБА, 2019) Чибіряков, В. К.; Станкевич, А. М.; Кошевий, О. П.; Левківський, Д. В.; Краснеєва, А. О.; Пошивач, Д. В.; Чубарев, А. Г.; Шорін, О. А.; Янсонс, М. О.; Сович, Ю. В.
    Приведено основні ідеї та можливості модифікованого методу прямих, для розв’язання задач теорії пружності та термопружності. Описана процедура зниження вимірності за допомогою проекційного методу БубноваПетрова. Запропоновано універсальний підхід для врахування граничних умов, узагальнено підхід на області складної геометричної форми. Приведені основні метричні тензори, визначена метрика евклідового простору. Доведено можливості та перспективи запропонованого методу. Даний метод включає в себе два послідовні етапи. На першому етапі, за допомогою проекційного методу, виконується зниження вимірності вихідних диференціальних рівнянь, початкових та граничних умов. Для цього використовується система локально-базисних функцій. На другому етапі редуковані диференціальні рівняння записуються у вигляді звичайних диференціальних рівнянь у формі Коші, які залежать від однієї просторової координати. Редукована система рівнянь та граничних умов розв’язується чисельним методом Гіра. Стаття є оглядовою та включає в себе основні особливості, що виникають при застосуванні модифікованого методу прямих для різних задач теорії пружності, динаміки та термопружності.