Опір матеріалів і теорія споруд

Постійне посилання на фондhttps://repositary.knuba.edu.ua/handle/987654321/207

Переглянути

Результат пошуку

Зараз показуємо 1 - 2 з 2
  • Документ
    Wavelet transform using for analysis of vibroimpact system chaotic behavior
    (КНУБА, 2018) Bazhenov, V. A.; Pogorelova, O. S.; Postnikova, T. G.; Lukianchenko, O. O.
    Chaotic behaviour of dynamical systems, their routes to chaos, and the intermittency are interesting and investigated subjects in nonlinear dynamics. The studying of these phenomena in nonsmooth dynamical systems is of the special scientists’ interest. In this paper we apply relatively young mathematical tool – continuous wavelet transform CWT – for investigating the chaotic behavior and intermittency in particular in strongly nonlinear non-smooth discontinuous 2-DOF vibroimpact system. We show that CWT applying allows to detect and determine the chaotic motion and the intermittency with great confidence and reliability, gives the possibility to demonstrate route to chaos via intermittency, to distinguish and analyze the laminar and turbulent phases.
  • Документ
    Invariant torus break-down in vibroimpact system – route to crisis ?
    (КНУБА, 2018) Bazhenov, V. A.; Pogorelova, O. S.; Postnikova, T. G.
    Chaotic vibrations of dynamical systems and their routes to chaos are interesting and investigated subjects in nonlinear dynamics. Particularly the routes to chaos in non-smooth dynamical systems are of the special scientists’ interest. In this paper we study quasiperiodic route to chaos in nonlinear non-smooth discontinuous 2-DOF vibroimpact system. The break-down of invariant torus or of the closed curve occurs just under the quasiperiodic route to chaos. Is it route to crisis? In narrow frequency range different oscillatory regimes have succeeded each other many times under very small control parameter varying. There were periodic subharmonic regimes − chatters, quasiperiodic, and chaotic regimes, the zones of prechaotic and postchaotic motion. The hysteresis effects (jump phenomena) occurred for increasing and decreasing frequencies. The observed chaos was the transient one.The chaoticity of obtained regime has been confirmed by typical views of Poincaré map and Fourier spectrum, by the positive value of the largest Lyapunov exponent, and by the fractal structure of Poincaré map. These investigations confirm the theory by Newhouse, Ruelle, and Takens who suggested a new bifurcation scenario where a periodic solution produces subsequently a torus and then a strange attractor.