Опір матеріалів і теорія споруд
Постійне посилання на фондhttps://repositary.knuba.edu.ua/handle/987654321/207
Переглянути
Документ Buckling and vibrations of the shell with the hole under the action of thermomechanical loads(КНУБА, 2020) Bazhenov, V. A.; Krivenko, O. P.The paper outlines the fundamentals of the method of solving static problems of geometrically nonlinear deformation, buckling, and vibrations of thin thermoelastic inhomogeneous shells with complex-shaped midsurface, geometrical features throughout the thickness, under complex thermomechanical loading. The technique is based on the geometrically nonlinear equations of three-dimensional thermoelasticity, the finite element formulation of the problem in increments, and the use of the moment finite-element scheme. A thin shell is considered by this method as a threedimensional body. We approximate a shell by one spatial universal finite element (FE) throughout the thickness. The universal FE is based on an isoparametric spatial FE with polylinear shape functions for coordinates and displacements. The universal element has additional variable parameters introduced to expand its capabilities. The method of modal analysis of the shell is based on an approach that at each current stage of thermomechanical loading takes into account the stresses accumulated at the previous stages. The developed algorithm allows one to study geometric nonlinear deformation and buckling of elastic shells of an inhomogeneous structure with a thin and medium thickness, as well as to study small vibrations of the shells relative to the reference deformed state caused by static loading, taking into account large displacements and a prestressed state. An analysis of the stability and vibration of the spherical panel with the hole is carried out. The effect on the frequencies and mode shapes of the shell of the sequential action of thermal and mechanical loads is investigated.Документ Effect of static loads on the natural vibrations of ribbed shells(КНУБА, 2018) Кrivenko, О. P.The article is devoted to a further analysis of the natural vibrations of inhomogeneous shells under the action of static loads. The method of investigation is based on a unified methodology that combines the problems of static stability and the vibrations of elastic shells. The problems of natural vibrations take into account the presence of a prestressed state of the shell structure from the action of static loads. The presence of a static load significantly affects the spectrum of the natural frequencies of the shell. This approach allows us to determine the critical load by the dynamic criterion. The method of investigating of inhomogeneous shells is based on the uniform methodological positions of the 3-d geometrically nonlinear theory of thermoelasticity and the finite-element method in the form of the moment finite-element scheme. So, a thin shell is considered by this method as a three-dimensional body which is modeled throughout the thickness by one isoparametric solid finite element with multilinear shape functions. Two nonclassical hypotheses are used to describe the stress–strain state of a thin inhomogeneous shell. The kinematic hypothesis of deformed straight line in the thickness direction: though stretched or shortened during deformation, a straight segment along the thickness remains straight. This segment is not necessarily normal to the mid-surface of the shell. The displacements are assumed distributed linearly along the thickness, which is conventional in the theory of thin shells. The static hypothesis compressive assumes that the stresses in the fibers are constant throughout the thickness of the shell. Modal analysis of a shallow ribbed panel demonstrates the effectiveness of the developed method. The natural frequencies and mode shapes are determined at each increment of static loading.Документ Modeling of nonlinear deformation and buckling of elastic inhomogeneous shells(КНУБА, 2014) Bazhenov, V. A.; Solovei, N. A.; Krivenko, O. P.The paper outlines the fundamentals of the method of solving static problems of geometrically nonlinear deformation, buckling, and postbuckling behavior of thin thermoelastic inhomogeneous shells with complex-shaped mid-surface, geometrical features throughout the thickness, and multilayer structure under complex thermomechanical loading. The method is based on the geometrically nonlinear equations of three-dimensional thermoelasticity and the moment finiteelement scheme. The method is justified numerically. Comparing solutions with those obtained by other authors and by software LIRA and SCAD is conducted.