УДК 534-21

Медведєв К.В., канд. фіз.-мат. наук, Шульга В.М., канд. фіз.-мат. наук, Корніснко В.Ф., канд. техн. наук, Ластівка І.О., канд. техн. наук

ПОШИРЕННЯ АКУСТИЧНИХ ХВИЛЬ КІЛОГЕРЦЕВОГО ДІАПАЗОНУ В ФІБРИЛЬНИХ НИТКАХ

Акустичні методи дослідження фізико-механічних властивостей композитних матеріалів найбільш полімерних належать до i інформативних і охоплюють широкий частотний інтервал. Ідентифікація результатів вимірювань, що спирається на фізичні моделі хвильових процесів, залежить від ступеня неоднорідності матеріалу і частот збурення. Теорія поширення акустичних хвиль кілогерцевого діапазону в порожнистих фібрильних нитках, викладена у даній статті, ґрунтується на принципі гомогенізації композитних матеріалів і теорії пружності анізотропного твердого тіла. Представлені теоретичні оцінки швидкостей поширення хвиль базуються на обґрунтованих і апробованих моделях і дозволяють рекомендувати пропоновану методику для науково-дослідної роботи по вивченню механічних властивостей ниток в практичній роботі із створення і вдосконалення неруйнівних методів контролю якості.

Пустотіла фібрильна нитка є порожнистим круговим циліндром з внутрішнім радіусом r_1 і зовнішнім радіусом r_2 ($r_2 - r_1 = 2h$ – товщина циліндру, $r_2 + r_1 = 2r_0$ – діаметр його серединної поверхні). Введемо циліндричну систему координат *ог* θz так, щоб вісь *оz* співпадала з віссю циліндричної порожнини. При незалежних від окружної координати θ коливаннях фізичні компоненти вектора переміщень u_r , u_z і тензора напружень σ_{rr} , $\sigma_{\theta\theta}$, σ_{zz} , σ_{rz} задовольняють рівнянням

$$\rho \frac{\partial^2 u_r}{\partial t^2} = \frac{\partial \sigma_{rr}}{\partial r} + \frac{\sigma_{rr} - \sigma_{\theta\theta}}{r} + \frac{\partial \sigma_{rz}}{\partial z}, \qquad \rho \frac{\partial^2 u_z}{\partial t^2} = \frac{\partial \sigma_{rz}}{\partial r} + \frac{\sigma_{rz}}{r} + \frac{\partial \sigma_{zz}}{\partial z}$$
(1)

і матеріальним співвідношенням

$$\sigma_{rr} = c_{11} \frac{\partial u_r}{\partial r} + c_{12} \frac{u_r}{r} + c_{13} \frac{\partial u_z}{\partial z}, \qquad \sigma_{\theta\theta} = c_{12} \frac{\partial u_r}{\partial r} + c_{22} \frac{u_r}{r} + c_{23} \frac{\partial u_z}{\partial z},$$

$$\sigma_{zz} = c_{13} \frac{\partial u_r}{\partial r} + c_{23} \frac{u_r}{r} + c_{33} \frac{\partial u_z}{\partial z}, \qquad \sigma_{rz} = c_{55} \left(\frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r} \right). \tag{2}$$

© Медведєв К.В., Шульга В.М., Корнієнко В.Ф., Ластівка І.О.

Континуальне представлення деформації матеріалу фібрильної нитки справедливе при дослідженні хвиль, довжини яких значно перевищують розміри неоднорідності її структури [2, 3]. При такому підході макроскопічні пружні модулі c_{ij} і густина р композиції як однорідного матеріалу визначаються теоретично [1, 2] по властивостях компонент і геометричній структурі.

Співвідношення (1) і (2) виконуються в усіх внутрішніх точках порожнистого циліндру $r_0 - h < r < r_0 + h$. На вільних від зовнішніх впливів бокових поверхнях $r = r_0 \pm h$ мають місце однорідні граничні умови

$$\sigma_{rr}(r_0 \pm h, z, t) = 0, \qquad \sigma_{rz}(r_0 \pm h, z, t) = 0.$$
 (3)

Для акустичної хвилі, що поширюється вздовж осі *оz*, слід скористаємося виразами

$$\{u_r(r, z, t), u_z(r, z, t)\} = r_0 \operatorname{Re}\{u_1(r/r_0), iu_3(r/r_0)\} \exp i(kz - \omega t)$$
(4)

для переміщень u_r і u_z . Кругова частота ω і постійна поширення k пов'язані з фазовою швидкістю υ_{ϕ} формулою $k\upsilon_{\phi} = \omega$ (при дійсному хвильовому числі k). Введемо безрозмірні величини

$$y = \frac{r}{r_0}$$
, $\bar{c}_{ij} = \frac{c_{ij}}{c_{00}}$, $\bar{\rho} = \frac{\rho}{\rho_{00}}$, $\varepsilon = \frac{h}{r_0}$, $\bar{k} = kr_0$, $\bar{\omega} = \omega r_0 \sqrt{\rho_{00}/c_{00}}$,

де параметри c_{00} і ρ_{00} мають розмірність пружної сталої і густини.

Після підстановки формул (4) в співвідношення (2), (1) і (3) одержимо систему двох звичайних диференціальних рівнянь

$$c_{11}\left(u_{1}'' + \frac{1}{y}u_{1}'\right) + \left(\rho\overline{\omega}^{2} - \bar{k}^{2}c_{55} - \frac{c_{22}}{y^{2}}\right)u_{1} + \bar{k}(c_{13} + c_{55})u_{3}' + \bar{k}\frac{c_{13} - c_{23}}{y}u_{3} = 0,$$

$$c_{55}\left(u_{3}'' + \frac{1}{y}u_{3}'\right) + \left(\rho\overline{\omega}^{2} - \bar{k}^{2}c_{33}\right)u_{3} - \bar{k}(c_{13} + c_{55})u_{1}' - \bar{k}\frac{c_{23} + c_{55}}{y^{2}}u_{1} = 0 \quad (5)$$

і граничні умови при $y = 1 \pm \varepsilon$

$$c_{11}u'_1 + \frac{c_{12}}{y}u_1 + \bar{k}c_{13}u_3 = 0, \quad u'_3 - \bar{k}u_1 = 0.$$
(6)

В формулах (5), (6) і далі риска зверху в безрозмірних величинах \overline{c}_{ij} та $\overline{\rho}$ опущена (на використання безрозмірних \overline{c}_{ij} та $\overline{\rho}$ вказують безрозмірні $\overline{\omega}$ і \overline{k}), штрихом позначені похідні по змінній *y*.

У рівняннях (5) змінна у змінюється в межах $1-\varepsilon < y < 1+\varepsilon$ і тому їх коефіцієнти є обмеженими функціями з обмеженими похідними будьякого порядку. Розв'язок такої системи рівнянь в інтервалі $1-\varepsilon < y < 1+\varepsilon$ буде аналітичним і його можна подати [3, 4] степеневими рядами

$$u_1(y) = \sum_{n=0}^{\infty} A_n^{(1)} (y-1)^n, \quad u_3(x) = \sum_{n=0}^{\infty} A_n^{(3)} (y-1)^n.$$
(7)

Підставимо ряди (7) в рівняння (5), зберемо коефіцієнти при однакових ступенях $(y-1)^n$ і прирівняємо їх нулеві. В результаті отримаємо алгебраїчні залежності

$$(n+2)(n+1)c_{11}A_{n+2}^{(1)} + (2n+1)(n+1)c_{11}A_{n+1}^{(1)} + (\rho\overline{\omega}^2 - c_{22} + n^2c_{11} - c_{55}\overline{k}^2)A_n^{(1)} + + (\rho\overline{\omega}^2 - c_{55}\overline{k}^2)(2A_{n-1}^{(1)} + A_{n-2}^{(1)}) + (n+1)(c_{13} + c_{55})\overline{k}A_{n+1}^{(3)} + + (c_{13} - c_{23} + 2nc_{13} + 2nc_{55})\overline{k}A_n^{(3)} + (nc_{13} + nc_{55} - c_{23} - c_{55})\overline{k}A_{n-1}^{(3)} = 0, (n+2)(n+1)c_{55}A_{n+2}^{(3)} + (2n+1)(n+1)c_{55}A_{n+1}^{(3)} + (\rho\overline{\omega}^2 - c_{33}\overline{k}^2 + n^2c_{55})A_n^{(3)} + + (\rho\overline{\omega}^2 - c_{33}\overline{k}^2)(2A_{n-1}^{(3)} + A_{n-2}^{(3)}) - (n+1)(c_{13} + c_{55})\overline{k}A_{n+1}^{(1)} - - (c_{23} + c_{55} + 2nc_{13} + 2nc_{55})\overline{k}A_n^{(1)} - (c_{23} - c_{13} + nc_{13} + nc_{55})\overline{k}A_{n-1}^{(1)} = 0 A_{-1}^{(j)} = A_{-2}^{(j)} = 0, \qquad j = 1,3, \qquad n = 0,1,2,\dots$$
 (8)

З вигляду формул (8) випливає, що вони дозволяють знайти всі постійні $A_2^{(j)}$, $A_3^{(j)}$,... через чотири перших $A_0^{(1)}$, $A_0^{(3)}$, $A_1^{(1)}$, $A_1^{(3)}$ і виконати граничні умови (6). З цією метою підставимо в них ряди (7) і зберемо члени при однакових ступенях $(y-1)^n$ рівних $(\pm \varepsilon)^n$ при $y=1\pm\varepsilon$. Після їх попарного додавання і віднімання одержимо рівності

$$\sum_{n=0}^{\infty} \varepsilon^{2n} \left\{ c_{11} \left[(2n+1) A_{2n+1}^{(1)} + 2n A_{2n}^{(1)} \right] + c_{12} A_{2n}^{(1)} + c_{13} \overline{k} \left(A_{2n}^{(3)} + A_{2n-1}^{(3)} \right) \right\} = 0 ,$$

$$\sum_{n=0}^{\infty} \varepsilon^{2n} \left\{ c_{11} \left[(2n+2) A_{2n+2}^{(1)} + (2n+1) A_{2n+1}^{(1)} \right] + c_{12} A_{2n+1}^{(1)} + c_{13} \overline{k} \left(A_{2n+1}^{(3)} + A_{2n}^{(3)} \right) \right\} = 0 ,$$

$$\sum_{n=0}^{\infty} \varepsilon^{2n} \left[(2n+1) A_{2n+1}^{(3)} - \overline{k} A_{2n}^{(1)} \right] = 0 , \qquad \sum_{n=0}^{\infty} \varepsilon^{2n} \left[(2n+2) A_{2n+2}^{(3)} - \overline{k} A_{2n+1}^{(1)} \right] = 0 . \tag{9}$$

Якщо тепер з формул (8) визначити постійні $A_2^{(j)}$, $A_3^{(j)}$,... через чотири перших $A_0^{(1)} \equiv X_1$, $A_0^{(3)} \equiv X_2$, $A_1^{(1)} \equiv X_3$, $A_1^{(3)} \equiv X_4$ і підставити їх в граничні суми (9), то одержимо систему чотирьох однорідних рівнянь

$$\sum_{\alpha=1}^{4} m_{\alpha\beta} \Big(c_{ij}, \rho, \varepsilon, \overline{k}, \overline{\omega} \Big) X_{\alpha} = 0, \qquad \beta = 1, \dots, 4.$$
 (10)

Умова сумісності цієї системи

$$\det\left\{m_{\alpha\beta}\left(c_{ij},\boldsymbol{\rho},\boldsymbol{\varepsilon},\bar{k},\overline{\boldsymbol{\omega}}\right)\right\}=0, \qquad (11)$$

є дисперсійним співвідношенням, що дозволяє знайти залежність постійної поширення \overline{k} від частоти $\overline{\omega}$, а потім фазову $\upsilon_{\phi} = \frac{\overline{\omega}}{\overline{k}} \sqrt{\frac{\rho_{00}}{c_{00}}}$ та

групову $v_{cp} = \frac{d\overline{\omega}}{d\overline{k}} \sqrt{\frac{\rho_{00}}{c_{00}}}$ швидкості (при дійсних \overline{k}). Форма хвилі по

радіальній координаті *г* визначається по відповідному нетривіальному розв'язку однорідної системи алгебраїчних рівнянь (10), рекурентних залежностях (8), рядах (7), формулах (4) і (2).

Викладений розв'язок має таку ж загальність, точність і можливість аналізу спектральних властивостей циліндричного ортотропного і розв'язок порожнистого циліндру, як для ізотропного або трансверсально-ізотропного циліндру в циліндричних функціях. Єдине ускладнення виникає при великих частотах і великих значеннях постійної поширення, коли обчислювальний процес по описаному алгоритму може стати нестійким. Практично це частоти високого мегагерцевого діапазону.

Зупинимося далі на аналізі дисперсійного співвідношення (11) для циліндрів з діаметрами малих хвильових розмірів (при $\bar{k} \ll 1$).

З структури граничних умов (9) випливає, що в цьому випадку в рядах (7) необхідно утримувати три перших члени. Після необхідних перетворень дисперсійне співвідношення (11) набуває вигляду

$$\det \begin{bmatrix} c_{12}, & c_{13}\bar{k}, & c_{11}, & 0\\ c_{22} + c_{55}\bar{k}^2 - \rho\overline{\omega}^2, & c_{23}\bar{k}, & c_{12}, & -c_{55}\bar{k}\\ \bar{k}, & 0, & 0 & -1\\ (c_{23} + c_{55})\bar{k}, & c_{33}\bar{k}^2 - \rho\overline{\omega}^2, & c_{13}\bar{k}, & -c_{55} \end{bmatrix} = 0,$$

звідки випливає

$$c_{11}\rho^{2}\overline{\omega}^{4} + \left[c_{12}^{2} - c_{11}c_{22} + \left(c_{13}^{2} - c_{11}c_{33}\right)\overline{k}^{2}\right]\rho\overline{\omega}^{2} + \left(c_{11}c_{22}c_{33} - c_{33}c_{12}^{2} - c_{22}c_{13}^{2} - c_{11}c_{23}^{2} + 2c_{12}c_{23}c_{13}\right)\overline{k}^{2} = 0.$$
(12)

Якщо в рівнянні (12) перейти до розмірних величин, виразити пружні модулі c_{ij} за допомогою технічних змінних [1, 2], і замінити хвильове число через частоту і фазову швидкість, тоді одержимо залежність

$$v_{\phi}^{2} = \frac{E_{3}}{\rho} \frac{1 - \omega^{2} r_{0}^{2} \frac{\rho}{E_{2}}}{1 - \omega^{2} r_{0}^{2} \frac{\rho}{E_{2}} (1 - v_{23} v_{32})}.$$

Оскільки остання формула справедлива при $\omega^2 r_0^2 \ll 1$, то розкладаючи останній вираз в ряд по $\omega^2 r_0^2$ для фазової швидкості υ_d , одержимо

$$\upsilon_{\phi} = \sqrt{E_3/\rho} \left(1 - \frac{1}{2} \omega^2 r_0^2 \frac{\rho}{E_2} \upsilon_{23} \upsilon_{32} \right).$$
(13)

Звідси випливає, що при низьких частотах в нитці поширюється повздовжня хвиля зі стержневою швидкістю $v_C = \sqrt{E_3/\rho}$.

Оцінимо величину поправочного члена в формулі (13). При $f = 10^6 \Gamma \mu$, $r_0 = 10^{-6} M$, $\sqrt{E_2/\rho} = 10^3 \frac{M}{c}$, $v_{23} = v_{32} = 0,4$ цей член має порядок 10^{-6} , тобто його вплив проявляється лише в мегагерцевому діапазоні. При таких частотах формула $v_c = \sqrt{E_3/\rho}$ незастосовна. В такому випадку в граничних умовах (9) і рекурентних залежностях (8) необхідно утримувати більшу кількість невідомих $A_n^{(j)}$, що потребує застосування комп'ютерних засобів.

Для композиції, матриця якої армована однонаправленою системою волокон, по теорії сумішей [1, 2] макроскопічний повздовжній модуль Юнга і густина визначаються за формулами

$$E_3 = c_m E_m + c_f E_f, \quad \rho = c_m \rho_m + c_f \rho_f.$$
 (14)

Властивості матриці позначені через E_m , v_m , ρ_m , властивості армуючих волокон – через E_f , v_f , ρ_f , а їх об'ємний зміст – через c_m і c_f ($c_m + c_f = 1$) відповідно.

Використовуючи вираз (14) для ефективного значення модуля Юнга і густини фібрильної нитки, формулу $\upsilon_c = \sqrt{E_3/\rho}$ приведемо до остаточного вигляду

$$\upsilon_C = \sqrt{\left(E_m c_m + E_f c_f\right)} / \left(\rho_m c_m + \rho_f c_f\right).$$
(15)

В реальних умовах акустична хвиля поширюється із затуханням внаслідок поглинання енергії, механізми якого різноманітні і важко піддаються послідовному кількісному опису. Будемо виходити з найпростішого способу врахування дисипативних властивостей матеріалу за допомогою комплексних модулів пружності для матриці і наповнювача

$$E_m = E'_m (1 - i\delta_m), \quad 0 \le \delta_m \ll 1; \quad E_f = E'_f (1 - i\delta_f), \quad 0 \le \delta_f \ll 1.$$

Тоді з рівняння руху площини рівних фаз плоскої хвилі і формули (15) для швидкості хвилі v'_{c} і коефіцієнта затухання α одержимо вирази

$$\upsilon_C' = \sqrt{\frac{E_m'c_m + E_f'c_f}{\rho_m c_m + \rho_f c_f}}, \qquad \alpha = \frac{\omega}{2\upsilon_C'} = \frac{\delta_m E_m'c_m + \delta_f E_f'c_f}{E_m'c_m + E_f'c_f}.$$

Оскільки для швидкостей і коефіцієнтів затухання хвиль в компонентах справедливі залежності

$$\upsilon'_m = \sqrt{\frac{E'_m}{\rho_m}}, \qquad \alpha_m = \frac{\omega \delta_m}{2\upsilon'_m}, \qquad \upsilon'_f = \sqrt{\frac{E'_f}{\rho_f}}, \qquad \alpha_f = \frac{\omega \delta_f}{2\upsilon'_f}.$$

то макроскопічний коефіцієнт затухання хвилі в композиції можна виразити через коефіцієнти затухання хвиль α_m і α_f в компонентах

$$\alpha = \frac{1}{\nu_c'} = \frac{\alpha_m \nu_m' E_m' c_m + \alpha_f \nu_f' E_f c_f}{E_m' c_m + E_f' c_f}.$$

В таблиці наведені розраховані за формулою (15) значення швидкості поширення акустичної хвилі в фібрильній нитці з полікапроаміду (індекс m), що наповнений поліетиленом (індекс f).

Таблиця 1

c_{f}	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40
$v_{_C}$	2667	2641	2616	2589	2562	2535	2508	2481
	1143	1140	-	1132	-	1124	_	1116

Верхній рядок відповідає орієнтованому випадку, коли властивості полікапроаміду і поліетилену приймають значення $E_m = 8031 M\Pi a$, $\rho_m = 1140 \kappa c/m^3$, $E_f = 5000 M\Pi a$, $\rho_f = 980 \kappa c/m^3$, а нижній рядок – неорієнтованому випадку, коли $E_m = 1500 M\Pi a$, $\rho_m = 1140 \kappa c/m^3$, $E_f = 1140 M\Pi a$, $\rho_f = 980 \kappa c/m^3$.

- Малмейстер А.К., Талуж В.П., Тетере Г.А. Сопротивление полимерных и композитных материалов. – Рига: Зинатне, 1980. – 572 с.
- Механика композитных материалов и элементов конструкций: В 3-х т. Т.1. Механика материалов. – Киев: Наукова думка, 1982. – 368 с. Т.2. Механика элементов конструкций. – Киев: Наукова думка, 1983. – 464 с.
- Механика композитов. В 12-и т. Т.9. Динамика элементов конструкций. Киев: "А.С.К.", 1999. – 379 с.
- 4. Шульга Н.А. Распространение осесимметричных упругих волн в ортотропоном полом цилиндре. Прикл. механика. 1974. 10, № 9. С. 14-18.

Надійшло до редакції 14.12.2006 р.