УДК 624.132.3

В.И. Снисаренко, д-р техн. наук, профессор НИИСП

ОСОБЕННОСТИ ПРИМЕНЕНИЯ ГРЕЙФЕРОВ ПРИ ПРОХОДКЕ КОЛОДЦЕВ И УЗКИХ ТРАНШЕЙ

Зависимость скорости бурения от показателей свойств буровых растворов хорошо известна [1]. С увеличением плотности раствора, концентрации в нем твердой фазы и вязкости среды скорость бурения падает. В работе [2] рассмотрено влияние на производительность ковшовых грунторазрабатывающих машин, функционирующих по технологии «стена в грунте», глубины выработки, категории грунта, плотности проходческого раствора. При этом раствор представлен ньютоновской жидкостью с переменной плотностью и постоянной вязкостью. Такой подход не является достаточным, поскольку, как отмечено выше, вязкость раствора существенно производительность грунторазрабатывающих машин. Во-вторых, вязкость глинистых растворов быстро возрастает с увеличением содержания твердой фазы, особенно если ее концентрация превышает 30 %. В-третьих, автором предложены перспективные в технологии «стена в грунте» такие компоненты растворов, как полимеры, патока и другие, вязкость которых на 3...4 порядка превышает вязкость воды. Наконец, в последние годы разработаны медленно твердеющие растворы для одноэтапной технологии «сборная стена в грунте», отличающиеся высокой плотностью и вязкостью.

Для выяснения характера зависимости производительности ковшовых грунторазрабатывающих машин от показателей свойств проходческих растворов выполнен анализ для ковшовых машин двух типов: с тросовой подвеской грейферного ковша (широкозахватывающий грейфер типа ШГ-600 конструкции НИИСП) и с грейфером на напорной телескопической штанге (напорный грейфер на экскаваторе ЭО-5122 конструкции Гидропроекта). Основные характеристики этих грейферов и параметры их ковшей, необходимые для расчетов, приведены в табл.1.

Отличительной особенностью грейфера на тросовой подвеске является опускание ковша в режиме свободного падения, при этом его скорость зависит от плотности и вязкости проходческого раствора. От этих же параметров зависит и коэффициент наполнения ковша, так как он испытывает дополнительное взвешивающее воздействие. Для рассматриваемого типа грейфера наполняемость ковша можно определить по

предложенной автором зависимости:
$$k_{_{\mathrm{H}}} = 0.75 \, \mathrm{lg} \left[M_{_{\mathrm{K}}} \left(1 - \frac{\rho_{_{\mathrm{p}}}}{\rho_{_{\mathrm{M}}}} \right) - 0.55 \right],$$
 где $k_{_{\mathrm{H}}}$ –

коэффициент наполнения ковша; $M_{_{\rm K}}$ — масса ковша в т; $\rho_{_{\rm p}}$ — плотность проходческого раствора; $\rho_{_{\rm M}}$ — плотность материала ковша.

Рабочий цикл ковшовой грунторазрабатывающей машины при технологии «стена в грунте» состоит из операций опускания грейфера с разомкнутыми челюстями на дно траншеи, копания, подъема рабочего органа, удержания его над траншеей для стекания проходческого раствора, поворота на выгрузку, выгрузки и поворота к траншее.

При копании грейфером на напорной штанге после опускания на дно траншеи рабочий орган перед смыканием челюстей приподнимается на высоту 0,10...0,15 м, что несколько удлиняет время цикла.

Процесс копания в глинистом растворе, обладающем повышенными по сравнению с водой плотностью и вязкостью, имеет следующие особенности, удлиняющие цикл. Взвешивание ковша на тросовой подвеске снижает коэффициент его наполнения (согласно указанной выше зависимости). Вследствие сопротивления проходческого раствора увеличивается продолжительность опускания ковша на дно траншеи и подъема из нее. Увеличиваются усилия, расходуемые на копание и преодоление сил инерции.

Время удержания грейфера над траншеей для стекания раствора мало меняется от его свойств. В исследованиях [3] показано, что при истечении глинистых растворов из отверстия в тонкой стенке при напоре до 7 см коэффициенты расхода для воды и для глинистого раствора отличаются менее чем на 2 %, причем коэффициент расхода глинистого раствора больше, чем воды.

Таблица 1. Основные технические характеристики грейферов

Технические данные	Ед. изм.	Грейфер на тросовой подвеске ШГ-606		Грейфер на напорной телескопической штанге ЭО-5122	
		ковш закрыт	ковш открыт	ковш закрыт	ковш открыт
Объем ковша $V_{\rm K}$	M^3	1	1	0,6	0,6
Ширина ковша B_{κ}	M	0,6	0,6	0,6	0,6
Длина ковша (захватка) L_{κ}	M	3,2	5,0	2,2	2,5
Максимальная глубина копания $h_{\scriptscriptstyle m T}$	M	25	25	25	25
Скорость подъема ковша U_{κ}	м/с	0,40,6	_	0,60,8	_
Скорость опускания ковша U'_{κ}	м/с	_	$f(ho_{ m p})$	_	0,9
Масса ковша M_{κ}	Т	4	4	6	6
Коэффициент разрыхления грунта k_p	1	1,2	_	1,2	_
Коэффициент наполнения ковша $k_{\rm H}$	_	$f(\rho_p)$	_	1	_
Площадь интенсивного бокового трения $F_{\rm rp}$	M ²	6,4	6,4	3,4	3,4
Площадь обтекания боковых поверхностей $F'_{\text{тр}}$	м ²	9,4	9,4	7,6	7,6
Площадь горизонтальной проекции ковша $F_{_{\rm I\! I}}$	м ²	2,0	1,5	1,4	1,5
Средняя высота ковша h	M	1,0	0,65	0,8	0,7
Базовая машина		Э-10011, Э-1252		ЭО-5122	
Мощность двигателя N	л.с.	110	110	110	110
Коэффициент приспособляемости двигателя $k_{\rm np}$	_	1,18	1,18	1,18	1,18
Коэффициент снижения частоты вращения α _ч	_	0,71	0,71	0,71	0,71

Для оценки продолжительности операций по перемещению ковша в среде проходческого раствора проведены динамические расчеты, идея которых заключается в следующем. Ковш движется в вертикальном, ограниченном стенками выработки и заполненном проходческим раствором, канале. Горизонтальное сечение выработки, определяющее живое сечение канала, может быть двух существенно различных форм и размеров: пионерный шурф длиной в один захват ковша; участок траншеи, равный трем и более захватам ковша. Это определяется наиболее целесообразной последовательностью разработки траншеи рабочим органом, обеспечивающей симметричную нагрузку на грейферные полуковши.

При движении в проходческом растворе ковш преодолевает силы тяжести $W_{\rm g}$, лобовое сопротивление раствора $W_{\rm g}$, трение раствора по боковой поверхности $W_{\rm TD}$,

инерционные силы $W_{\rm H}$. Площадь трения можно разделить на две качественно отличающиеся зоны: интенсивного трения $F_{\rm rp}$ и свободного обтекания $F'_{\rm rp}$. Зона интенсивного трения включает боковые стенки ковша, плотно соприкасающиеся со стенками выработки. Остальные поверхности ковша относятся к зоне свободного обтекания. Проходческий раствор представлен суспензией из глинистых минералов, которая, как правило, отвечает реологической модели пластично-вязкого тела Шведова-Бингама [4]: $\tau = \tau_0 + \eta \dot{\varepsilon}$, где τ_0 — сцепление; η — пластическая вязкость; $\dot{\varepsilon}_i$ — градиент скорости.

Таким образом, усилие в подвеске грейферного ковша W_{κ} при копании грунта в среде глинистого раствора описывается уравнением равновесия сил:

$$W_{\kappa} = W_{\rm TP} + W_{\rho} + W_{g} .$$

Согласно физической модели процесса сила трению ковша включает составляющие вязкого сопротивления W_η и сопротивления сцеплению грунта W_{τ_0} [5]:

$$W_{\rm TP} = W_{\eta} + W_{\tau_0}$$
.

Составляющая $W_{\eta} = \eta_{\rm p} \frac{U_{\rm k}}{\delta} F_{\rm Tp} + \eta_{\rm p} \dot{\varepsilon} F_{\rm Tp}'$, где $\eta_{\rm p}$ — вязкость раствора; $U_{\rm k}$ — скорость движения ковша; δ — зазор в каналах между ковшом и стенкой траншеи; $\frac{U_{\rm k}}{\delta}$ — градиент скорости в зоне трения; $F_{\rm Tp}$ — площадь бокового трения; $\dot{\varepsilon}$ — градиент скорости в зоне обтекания; $F_{\rm Tp}'$ — площадь обтекания боковых поверхностей.

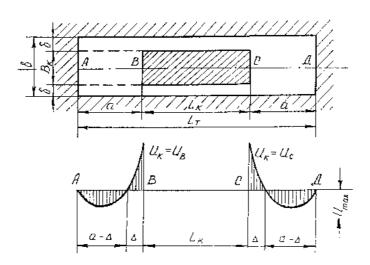


Рис.1. Схема распределения скоростей по оси пионерного шурфа

Составляющая $W_{\tau_0}=C_{\tau_0}h_{\kappa}r_0 au_0$, где $C_{\tau_0}=\frac{2\pi}{1-r_a}$ — безразмерный коэффициент; $r_a=\frac{r_0}{r_1}$ — отношение диаметра внутренней трубы (ковша) r_0 к диаметру наружной трубы (выработки) r_1 ; h_{κ} — глубина копания.

Сопротивление давлению $W_{\rho}=C_{\rho}\rho_{\rm p}F_{\rm h}\frac{U_{\kappa}^2}{2}$, где C_{ρ} – безразмерный коэффициент, зависящий от формы обтекаемого тела и числа Рейнольдса; $\rho_{\rm p}$ – плотность глинистого раствора; $F_{\rm h}$ – площадь миделевого сечения ковша.

Сопротивление силам тяжести $W_g = M_{_{\rm K}} g \left(1 - \frac{\rho_{_{\rm p}}}{\rho_{_{\rm M}}} \right) + V_{_{\rm K}} \frac{k_{_{\rm H}}}{k_{_{\rm p}}} (\rho_{_{\rm rp}} - \rho_{_{\rm p}}) g$, где $V_{_{\rm K}}$ – вместимость

ковша; $k_{\rm p}$ – коэффициенты разрыхления грунта.

Проведен анализ скоростей движения раствора, его реологических показателей и геометрических размеров растворопроводящих каналов (показателей, входящих в критерий Рейнольдса). Установлено, что движение раствора при копании протекает в ламинарном режиме с возможным образованием незначительных локальных зон, где движение раствора отсутствует [6]. Распределение скоростей потока в живом сечении растворопроводящих каналов происходит по параболическому закону, рис.1.

Из уравнения баланса масс получены значения градиентов скоростей потока, свободно обтекающего ковш. Определение градиента скорости потока в зонах интенсивного трения затруднительно, поскольку он зависит от зазора между ковшом и стенкой траншеи, величина которого точно неизвестна. Зазор δ колеблется от нескольких миллиметров, что соответствует конструктивному уступу в ковше, до десятых долей миллиметра, соответствующих размеру частиц раствора и грунта. При скорости ковша $U_{\rm k}$ = 0,5...2 м/с и указанных размерах зазора градиент скорости варьируется в пределах $\dot{\varepsilon} =$ $1.10^2...1.10^4$ с⁻¹. На распределение скоростей в основных растворопроводящих каналах зазор δ практически не влияет, а его величину можно уточнить при сопоставлении полученных расчетных данных с натурными наблюдениями.

Таблица 2. Предельные значения скоростей и градиентов скоростей при движении грейферного ковша под глинистым раствором

Грейфер	Форма Выра- ботки	Операции	Скорос	ть, м/с	Градиент скорости, с ⁻¹		
			ковша $U_{\scriptscriptstyle \rm K}=$ $=U_{\scriptscriptstyle \rm B}-U_{\scriptscriptstyle \rm C}$	раствора в живом сечении выработки $U_{ m max}$	у стенок ковша со стороны живого сечения выработки $\dot{\mathcal{E}}_{_{\mathrm{B}}} = \dot{\mathcal{E}}_{_{\mathrm{C}}}$	у стенок выработки $\dot{\mathcal{E}}_{a} = \dot{\mathcal{E}}_{\pi}$	
На тросовой подвеске	Пионер- ный шурф	Подъем ковша	0,40,6	1,21,7	5,68,4	6,59,8	
		Опускание ковша	1,82,2	0,50,6	3,13,7	1,41,8	
	Участок траншеи	Подъем ковша	0,40,6	0,30,4	0,40,6	0,20,3	
		Опускание ковша	1,82,2	0,81,0	1,34,4	3,64,4	
На напорной штанге	Пионер- ный шурф	Подъем ковша	0,60,8	0,30,4	116,6155,4	123,4164,6	
		Опускание ковша	(требуют расчета)				
	Участок траншеи	Подъем ковша	0,60,8	0,50,7	1,01,3	1,41,8	
		Опускание ковша	0,9	0,8	1,6	2,3	

Поля скоростей в растворопроводящих каналах исследованы при перемещении двух типов грейферных ковшей при различных сечениях выработки. Предполагалось, что проскальзывание раствора относительно стенок ковша отсутствует, что соответствует допущениям, обычно принимаемым в гидравлике буровых растворов [5]. Учитывались граничные условия потока и параболическое распределение скоростей в живом сечении.

При помощи уравнений баланса движущихся масс получены основные характеристики потоков: максимальные скорости в живых сечениях; градиенты скоростей потока у стенок ковша и у стенок выработки.

В табл.2 приведены предельные значения скоростей и градиентов, соответствующих схеме на рис.1. Их анализ подтверждает ламинарность режима движения раствора. При этом сопротивление раствора в зависимости от формы сечения выработки изменяется незначительно для грейфера на тросовой подвеске и существенно — для грейфера на напорной штанге (примерно в 100 раз). Силы сопротивления обтеканию составляют относительно небольшую часть общего сопротивления движению ковша в среде проходческого раствора.

Литература

- 1. Рябченко В.И. Управление свойствами буровых растворов. М.: Недра, 1990. 231 с.
- 2. Галинский А.М. Расчет производительности грейфера при работе в среде глинистой суспензии: В сб. «Комплексная механизация и механовооружение строительства.— К.: НИИСП, 1981.— С.9-13.
- 3. Шишченко Р.И., Есьман Б.И., Кондратенко П.И. Гидравлика промывочных жидкостей.— М.: Недра, 1976.— 274 с.
- 4. Вялов С.С. Реологические основы механики грунтов: Учеб. пособ. для строит. вузов. М.: Высш. шк., 1978. 447 с.
- 5. Гукасов Н.А. Краткий справочник по гидравлике при креплении скважин. М.: Недра, 1987. – 216 с.
- 6. Липатов В.И., Миттельман Б.И., Плотников В.М. Об определении критического режима буровых и цементных растворов / Нефтяное хозяйство.— 1972.— № 11.— С.27-30.