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Abstract. Modern automated engineering systems have variable hydraulic/aero-

dynamic conditions with Reynolds number from zero to hundred thousand with 

a wide range of roughness. Simple approximations of the Colebrook-White equa-

tion cannot give enough precision. The aim of the work is a universal simple 

precise approximation of the Colebrook-White equation. The methods are se-

lected by the analysis of the equation curve. In the whole range of turbulent flow, 

it is near to linear. Thus, Newton’s method is very effective. The algorithm is 

proposed for getting high-precision approximations. The results are two simple 

explicit ones for rough and careful calculations with a deviation of 5.36 % and 

0.00072 % in a wide range of parameters. It is shown on the examples of the 

objects: the highest building “Biotecton” and researches of “green roofs” in a 

wind tunnel. The scientific novelty is that we scientifically grounded the effective 

usage of Newton’s method, which provides new universal, precise and simple 

explicit approximations of Colebrook-White equation. The practical value is that 

the approximations are covered different practical tasks of hydraulic and aerody-

namic calculations in the whole range of turbulent flow. 

Keywords: Colebrook-White equation, Hydraulic calculation, Aerodynamic 

Calculation, Microclimate System, Turbulent Flow, Approximation. 

 

1 Introduction 

Quality and reliability of engineering systems in buildings depends on the correctness 

of hydraulic and aerodynamic calculations of pipelines or air ducts. Friction losses in 

most cases are significant in the total pressure losses. Most flows in the systems are 

turbulent, and the friction losses correspond to the accurate but implicit Colebrook-

White equation [1]: 

𝐸𝑄 = 𝑓−1/2 +
2

ln(10)
ln (

2.51

𝑅𝑒
𝑓−1/2 +

𝛥𝑒/𝐷

3.71
) =

2

ln(10)
ln (

𝑎

3.71𝑅𝑒
) + 𝑓−1/2 = 0, (1) 

where Δe – equivalent roughness of the pipeline, m; Re – Reynolds number; D – hy-

draulic (equivalent) diameter of the pipeline, m; a - parameter: 
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𝑎 = 𝑅𝑒(𝛥𝑒/𝐷) + 9.3121/𝑓
−1/2. (2)  

In older systems with an approximately constant hydraulic or aerodynamic regime, 

most flows have a developed turbulent regime, and the Reynolds number is more than 

10,000. In these conditions very simple logarithmic (after conversion to natural one) 

and power approximations by A. Altshul [2] were used: 

𝑓−1/2 = −(1.8/ln(10))ln (((𝛥𝑒/𝐷)/10) + 7/𝑅𝑒); (3) 

𝑓 = 0.11((𝛥𝑒/𝐷) + (68/𝑅𝑒))
1/4

. (4) 

Due to increasing energy efficiency, modern systems are highly automated. A signifi-

cant amount of research is devoted to the appropriate air distributors [3, 4, 5, 6] or 

optimal control strategies [7, 8, 9]. However, the simulation of hydraulic and aerody-

namic conditions [10] is no less important. The Reynolds number varies from zero to 

hundreds of thousands. The range of equivalent roughness, m, in modern pipelines and 

air ducts has also expanded. Plastic technologies decrease it by order. Flexible corru-

gated pipelines rise it up to commensurable to the diameter [m]. Therefore, universal, 

simple and accurate explicit approximations of the Colebrook-White equation are be-

coming especially relevant today. Due to the forced use of iterative procedures, the 

modelling of the variable thermal-hydraulic regime of a renovated one-pipe heating 

system [10] of an apartment building took more than a day. Through the efforts of the 

English Wikipedia Society, a table of historically significant approximations was cre-

ated, which at May 2020 had 26 positions [11]. At May 2020, the last entry corresponds 

to 2018 [12]. Dejan Brkić and Pavel Prax [1] obtained the most accurate modern ap-

proximations in 2019 by one and two steps of Padé approximation. It has 0.0259 % of 

deviation, but it is too bulky. If we pick a simple fast-converging method, a compact 

approximation will be found. For example, Newton’s method has been effectively used 

for computer calculation of Darcy coefficient [13, 14]. 

2 Aim 

The aim of the work is a simple precise approximation of the Colebrook-White equa-

tion, which is applicable for manual calculation and complex simulations. 

3 Method 

To choose a method for solving equation (1), let us analyse its properties. Partial deriv-

atives of the solution according to the parameters Re ≥ 2320 and Δe/D ≥ 0 (to save time 

taken in the Maxima system) ∂ ( f
 –1/2) / ∂ Re > 0 and ∂ ( f

 –1/2) / ∂ (Δe / D) < 0. Therefore, 

the solution f –1/2 monotonically increases with increasing Reynolds number and de-

creases with increasing relative roughness Δe / D. The range of the solution is deter-

mined from Eq. (1). For Re = ∞ and Δe/D = 0 (f = 0). At Re = 2320 and 

Δe / D = 1 Eq. (1) has been solved numerically. Thus 
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(𝑓−1/2)
𝑚𝑖𝑛

= 1.1348004636910905664 ≤ 𝑓−1/2 ≤ ∞ (5) 

0 ≤ f ≤ 0.77653492097452793220 = fmax. (6) 

amin = 9.3121∙1.1348004636910905664 = 10.567375397937803782 < a < ∞. (7) 

The first derivative of the EQ function of Eq. (1) by the unknown parameter f –1/2 mon-

otonically decreases with increasing  f –1/2 and Re Δe/D: 

1 < ∂EQ/∂(f –1/2) = 1 + ((18.6242/ln (10))/a) < 1.7654111816109958780. (8) 

The narrow range of change of the derivative (8) indicates the closeness of the equation 

function EQ to the linear one. The second derivative is always negative and changes 

from minus 0.67448966236883048814 to zero. The function is convex with the curva-

ture 

𝜅 = (173.43041282/ln(10))/(((𝑎 + (18.6242/ln(10))) /𝑎1/3)
2

+ 𝑎4/3)

3/2

.   (9) 

The derivative of (9) by a has one positive root aextr = 2.328025 (171/2 – 1) / ln (10) ≈ 

 ≈ 3.1576109808930112860, at which κ extr = 4 (17 1/2 – 1) ln (10) / (3 (17 1/2 + 7)) 3/2 ≈ 

≈ 0.14922492819316431408. For a → ∞, the curvature (9) goes to zero. Therefore, the 

root corresponds to the maximum curvature (8). In the range (5), the curvature mono-

tonically decreases: κmax = 0.080752349164383260460 ≤ κ ≤ 0. Therefore, the curve 

should be close enough to the line. 

Let us test the maximum nonlinear curve EQ. We will assume that all approximations 

in the process of solving Eq. (1) are close enough to the root (otherwise, these parame-

ters in the process of solving should be considered as an independent). As it is shown 

above, the solution  f –1/2 increases by Re and decreases by Δe / D. To clarify the total 

effect on the curvature, let us express the parameter a from Eq. (1): 

a = 3.71 Re/10 (1/2) f  –1/2
. (10) 

The parameter a by Eq. (10) increases with Re and decreases with f –1/2, which, in turn, 

decreases (as it is shown above) with Δe / D. Therefore, taking into account the de-

crease in curvature (9) by a, the largest value of κ corresponds to Re = 2320 and Δe / D 

= 0 (Fig. 2). The obtained result indicates the practical linearity of the curve EQ by the 

solution f –1/2. Thus, the methods of linear approximation are the most suitable for solv-

ing the Eq. (1). Preference should be given to a method that requires only one approx-

imation, i.e. the Newton method. At manual calculations, the first approximation can 

be taken not less than ( f –1/2)min. 
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Fig. 1. The graph of the function EQ in Eq. (1) depending on the approximation of  f –1/2 

In machine calculation, excessive verification reduces the performance of the algo-

rithm. However, Fig. 2 in the critical case of the greatest curvature shows that the prox-

imity to linearity is maintained when the approximation deviates more than two times 

in the smaller direction. 

According to Eqs. (1) and (8), the formula of Newton’s method is simple and can be 

used for computer and manual calculations: 

𝑓𝑖+1
−1/2

= 𝑓𝑖
−1/2

−
𝐸𝑄(𝑓𝑖

−1/2
)

(𝑑𝐸𝑄/𝑑(𝑓−1/2))
𝑓
𝑖
−1/2

=

18,6242

ln(10)
𝑓𝑖
−1/2

−
2

ln(10)
𝑎𝑖ln(

𝑎𝑖
3,71𝑅𝑒

)

(18,6242/ln(10))+𝑎𝑖
, (11) 

where i is the iteration number, and i = 0 corresponds to the first approximation. For 

the efficient calculation of Eq. (11), it is recommended to calculate the constants with 

the maximum accuracy of the corresponding computer system (or calculator) and enter 

or store them digitally. Very high accuracy is not required for engineering calculations. 

Therefore, instead of performing iterations (11), another approach is proposed to 

achieve high accuracy. We assume a sufficiently dense grid of Reynolds numbers Re = 

2320...109 with a variable step ΔRe: ΔRe = 20 at Re ≤ 10000, ΔRe = 200 at 

10000 < Re ≤ 100000, ΔRe = 2000 at 100000 < Re ≤ 1000000, and so on. Similarly, we 

take a grid of relative equivalent roughness Δe / D = 0...0.1 with a variable step 

Δ(Δe / D): Δ(Δe / D) = 2·10 – 8 for Δe / D ≤ 10 – 5, Δ(Δe / D) = 2·10 – 7 for 

10 – 5 < Δe / D ≤ 10 – 4, Δ(Δe / D) = 2·10 – 6 for 10-4 < Δe / D ≤ 10 – 3, etc. We accept the 

first approximation, in this paper – (3). To increase accuracy, all numerical coefficients 

are considered as unknowns C1, C2 and C3: 

f – 1/2 = – C1 ln (((Δe / D) / C2) + (C3 / Re)). (12) 

Their values in Eq. (3) are considered as the first approximation. In the system of com-

puter algebra (in this work – SciLab) a program has been created that single time nu-

merically solves Eq. (1) with the maximum possible accuracy in each node of the grid. 

After that, a function multiple times returns the maximum relative deviation on the grid 

of the value according to Eq. (12) from the obtained solution of Eq. (1) for any values 

of the coefficients C1, C2 and C3. The obtained result is optimized (in this work by the 
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fsolve function according to the Nelder-Mead method) to minimize the maximum de-

viation. During the process, accuracy increases by an order in comparison with Eq. (3). 

Next, the grid should be extended to test the possibility of expanding the range of ap-

plication of the formula without reducing accuracy. 

After that, a single iteration by Eqs. (2) and (11) is applied to the first approximation 

(12). In this case, again, all numerical coefficients are replaced by unknowns Cj. The 

obtained coefficients C1, C2 and C3 are also not considered as constants but are used for 

the first approximation for optimization, which is performed similarly. This allows sig-

nificant refining of the result obtained by Newton’s method. 

Similarly, two iterations of Newton’s methods with more unknown coefficients can 

be performed. Since Newton’s iterative process was broken at the first iteration because 

of optimization, there is no guarantee that the previously obtained coefficients Cj are a 

better second approximation than the standard coefficients in Eqs. (2) and (11). Thus, 

standard coefficients were used to ensure the convergence of the process. 

4 Results 

As a result, after a few days of machine calculations we have (equations are given in 

the order of calculation in a form that provides a minimum of operations): 

• with a deviation up to 5.36 % (Fig. 2) within Re = 2320...109, Δe / D = 0...0.65 for 

rough engineering calculations: 

𝑓 = (0.8284ln (
𝛥𝑒/𝐷

4.913
+

10,31

𝑅𝑒
))

−2

  (13) 

• with a deviation up to 0.00072 % (Fig. 3) at Re = 2320...109, Δe / D = 0...0.65 for the 

most application in engineering and science (further refinement is impractical): 

{
 
 

 
 𝑓0

−1/2
= −0.79638ln (

𝛥𝑒/𝐷

8.208
+

7.3357

𝑅𝑒
) ,

𝑎1 = (𝑅𝑒𝛥𝑒/𝐷) + 9,3120665𝑓0
−1/2

,

𝑓 = (
8.128943+𝑎1

8.128943𝑓0
−1/2

−0.86859209𝑎1ln(𝑎1/3.7099535𝑅𝑒)
)
2

.

  (14) 

Large Reynolds numbers (over 106) are used in special technologies and constructions. 

An example is the project of the highest skyscraper "Biotecton" [15] of 1 km high for 

cities with polluted air. Its ventilation takes very clean air at the level of 1 km and sup-

plies it to through an air-duct of 10 m in diameter. It is thermally insulated and sound-

proofed. Only technical and economic indicators limit the air velocity. The Reynolds 

number exceeds 10 million. The equations (14) are the best universal ones for calcula-

tions of all microclimate systems in the object.  
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Fig. 2. Deviation of rd,%, approximation (13) from the Colebrook-White Eq. (1) depending on 

the Reynolds number Re and the relative equivalent roughness Δe / D. 

 

Fig. 3. Deviation of rd,%, approximation (14) from the Colebrook-White Eq. (1) depending on 

the Reynolds number Re and the relative equivalent roughness Δe / D. 

An example of pipelines with high equivalent roughness is the study of "Green struc-

tures" in a straight wind tunnel. The first author’s research was carried out [16] in the 

Eiffel chamber (Fig. 4 a) with unlimited internal height [m]. To increase the length of 

the models it is planned to use a wind tunnel (Fig. 4 b) with a straight duct of a cross-

section of 1 × 1 m (hydraulic diameter Dh = 1 m) and a flow velocity up to u = 10 m/s 

(Re = 666667). The grass on the "green roof" model grows up to (averaged) 450 mm 

(Fig. 4 c). Such a model with a width of 1000 mm is planned to be installed at the bot-

tom of the duct. The equivalent roughness of other walls can be considered 0.1 mm 

[17]. The average equivalent channel roughness will be  

(450 + 0.1 + 0.1 + 0.1) / 4 = 112.6 mm. The relative equivalent roughness is 

Δe / D = 0.1126. According to the Eq. (14) f = 0.1085. For comparison, by Eq. (4)  

f = 0.06373, i.e. 1.7 times less. Using air density ρ = 1.2 kg/m3 (at temperature of 

T = 293.15 K), pressure loss per meter according to Darcy's formula [2]  

Δpℓ = (f  / Dh) (ρ u2 / 2) = 6.51 Pa/m. 
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a  b  c  

Fig. 4. Wind tunnels: a – Eiffel chamber; b - straight wind tunnel at Czestochowa Polytechnic 

(Czestochowa, Poland); c – the model with grass of 300...500 mm high. 

This pressure gradient at a model length of 1...2 m is insignificant and it is within the 

pressure gradient that occurs when the wind goes around the roofs of real buildings. 

5 Scientific novelty and practical significance 

The scientific novelty is that we scientifically grounded the effective usage of Newton’s 

method, which provides new universal, precise and simple explicit approximations of 

Colebrook-White equation. The practical value is that the approximations are covered 

different practical tasks of hydraulic and aerodynamic calculations, and allow simula-

tion of variable hydraulic conditions in microclimate systems with adequate computa-

tional resources. 

Conclusions 

The obtained approximations of the solution of the Colebrook-White equation allow 

solving effectively a wide range of problems – engineering calculations and scientific 

researches. The effectiveness of the use of approximations is confirmed by the example 

of studies of green roofs in the wind tunnel in the form of a straight channel. 
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