Модель щелевого резания грунта под геостатическим давлением

Михаил Сукач

Киевский национальный университет строительства и архитектуры Воздухофлотский проспект 31, Киев, Украина, 03680 <u>msukach@ua.fm</u>, orcid.org/0000-0003-0485-4073

Получено 05.05.2018, принято после просмотра 09.06.2018 https://doi.org/10.31493/uwt1909.1301

Аннотация. Для создания грунтовых противофильтрационных экранов необхолимо обеспечить устройство горизонтальной щели достаточно больших размеров массиве грунта. Использовании тяговых рабочих органов типа бульдозерного отвала требует оценки давления грунта на нож и силовых характеристик рабочего процесса. Величина давления влияет на деформируемость грунта в зоне рабочего органа, изменение пористости среды, условия образования и устойчивость сводов, отвод грунта в боковые технологические прорези и т.п. Задача усложняется отсутствием визуального контроля щелевого резания на глубине и управляемости процессом.

В настоящей статье получена аналитическая модель давления грунта на лобовую поверхность прямого острого ножа при щелевом резании. Определены силы, действующие на нож, установленный под углом к траектории его движения, а также установлены зависимости силы резания от изменения пористости и размеров зоны деформации грунта при отсутствии его бокового выпора.

По предварительным оценкам расчетные значения этих параметров совпадают с экспериментальными данными известных ученых для площадки износа ножа, что позволяет в дальнейшем оценить тяговое сопротивление проходческой машины, управлять процессами сводообразования и отвода грунта по сторонам рабочего органа.

Ключевые слова: щелевое резание, бульдозерный отвал, геостатическое давление, деформация грунта, боковой выпор.

Михаил Сукач профессор кафедры строительных машин д.т.н., проф.

ДАВЛЕНИЕ ГРУНТА НА НОЖ ПРИ ЩЕЛЕВОМ РЕЗАНИИ

Рассмотрим квазистационарый процесс резания грунта прямым широким плоским ножом типа бульдозерного отвала [6, 7, 12]. Скорость ножа незначительна (порядка нескольких см/с) и в модели не учитывается. Резание происходит в массиве грунта на глубине, превышающей критическую глубину резания. Угол резания не более 10...15°. Отвод грунта в боковые стороны отсутствует [1, 5, 9].

Основные свойства грунта, влияющие на процесс: сцепление, углы внутреннего и внешнего трения, плотность и пористость среды (до и после нагружения), плотность скелета грунта.

Используем прежде всего зависимость давления от изменения пористости грунта, как основной причины деформации [4; C.130]:

$$-a = \frac{\Delta \omega}{\Delta \sigma},\tag{1}$$

где a – коэффициент уплотнения; ω – коэффициент пористости; σ – давление; $\Delta\omega$, $\Delta\sigma$ – соответственно их изменения.

Для указанных выше коэффициентов справедливы равенства [2, 13]

$$1 + \omega = \frac{V}{V_{\rm kp}} = \frac{m/\rho}{m/\rho_{\rm kp}} = \frac{\rho_{\rm kp}}{\rho}, \qquad (2)$$

где V – объем элемента грунта массой m; $V_{\rm kp}$ – объем его твердой фазы; ρ – плотность элемента грунта; $\rho_{\rm kp}$ – плотность его твердой фазы.

Плотность грунта р является функцией расстояния от поверхности среза и изменяется по показательному закону [15, C.51]. В наших координатах и обозначениях (Рис.1) это будет

$$\rho = \rho_0 e^{kz}, \qquad (3)$$

- Рис.1. Расчетная схема щелевого резания грунта острым ножом: *AB* – профиль ножа; *l* – длина ножа; δ – угол резания; *h*_p – толщина среза; *h* – толщина уплотненной части грунта; σ_т – максимальное давление на ноже (в точке *A*)
- **Fig. 1**. The design scheme of slot cutting of soil with a sharp knife: AB – knife profile; l – is the length of the knife; h_p – cutting angle; hp is the thickness of the slice; h – is the thickness of the compacted part of the soil; σ_T – maximum pressure on the knife (at point A)

где ρ_0 – плотность грунта в естественном залегании; k – параметр, зависящий от конструкции рабочего органа, свойств грунта и характера резания.

Применяя закон сохранения вещества в состоянии до и после уплотнения, можно написать равенство

$$\sigma_{0}(h+h_{0}) = \int_{0}^{h} \rho dz = \int_{0}^{h} \rho_{0} e^{kz} dz =$$

$$= \rho_{0} \cdot \frac{e^{kh} - 1}{k} \approx \rho_{0} \left(h + \frac{kh^{2}}{2} \right).$$
(4)

Последнее равенство в формуле (4) приближено, что следует из разложения ехр в ряд. Используя последовательности равенств (4), получаем

$$h_{\rm p} = \frac{kh^2}{2}; \ h = \frac{2h_{\rm p}}{u},$$
 (5)

где u = kh — основной безразмерный параметр, подлежащий определению.

Из формулы (5) следует, что очень часто u < 0,5 и ошибки равенств (5) не превышают 20%.

При значении параметра *и* порядка 0,1 (как в рассмотренном в конце этой работы приложении) ошибки $\beta < 5\%$ (это математические ошибки приближенного равенства (4)).

Напишем ряд следствий, полученных из формул (1), (2), (3):

$$\sigma = \sigma_0 - \frac{1}{a} \Delta \omega; \qquad (6)$$

$$\Delta \omega = \frac{\rho_{\kappa p}}{\rho} - \frac{\rho_{\kappa p}}{\rho_0} = -\frac{\rho_{\kappa p}}{\rho_0} \left(1 - \frac{\rho_0}{\rho}\right) =, \quad (7)$$
$$= -\left(1 + \omega_0\right) \left(1 - e^{-kz}\right) \approx -\left(1 + \omega_0\right) kz$$

где ω_0 , σ_0 – соответственно пористость грунта и геостатическое давление в естественном залегании. Ошибка последнего приблизительного равенства даже на треть меньше ошибки предыдущего аналогичного равенства, так как ряд для e^{-kz} знакопеременный. При z = k будет kz = u; $\sigma = \sigma_{T}$, поэтому равенство (6) можно представить в виде

$$\sigma_{\rm T} = \sigma_0 + \frac{\left(1 + \omega_0\right)}{a}u. \tag{8}$$

В то же время при переменной *z* аналог формулы (8) будет

$$\sigma(z) = \sigma_0 + \frac{\left(1 + \omega_0\right)}{a} k z.$$
 (9)

Вычислим по закону Кулона-Мора касательную силу *F*, действующую в сечении вдоль линии *OA*, по которой происходит вертикальный сдвиг, приводящий к сбросу напряжения, накопившегося при уплотнении (силу *F* вычисляем для поверхности слоя грунта единичной толщины):

$$F = \int_{0}^{h} \tau(\sigma) dz = \int_{0}^{h} \left(C + \sigma_0 tg\theta + tg\theta \cdot \frac{(1 + \omega_0)}{a} kz \right) dz =$$
$$= \left(C + \sigma_0 tg\theta \right) h + tg\theta \frac{(1 + \omega_0)}{a} k \frac{h^2}{2} \approx$$
$$\approx h \left(C + tg\theta \frac{\omega_0 + 1}{a} \frac{u}{2} \right), \tag{10}$$

где C – сцепление в грунте; θ – угол внутреннего трения; $\sigma(z)$ – давление из формулы (9). В последнем приближении формулы (10) величина σ_0 исключена, как незначительная в общей сумме $\sigma(z)$ [11].

С другой стороны, величина F равнодействующая вертикальных составляющих других сил, действующих на рассматриваемый уплотненный слой грунта, расположенный под участком ножа AB. Сечение этого слоя единичной толщины показано на Рис.1 в виде четырехугольника *OABD* (вид сбоку).

Во-первых, это вертикальная составляющая сил давления грунта

$$F_1 = \sigma_{\rm cp} l \cos \delta = \frac{\sigma_{\rm T}}{2} l \cos \delta \,, \tag{11}$$

где $\sigma_{\rm cp} = \sigma_{\rm T}/2$ – среднее давление вдоль линии *AB*.

В первом приближении зависимость этого давления вдоль *АВ* линейна [3, C.176, Puc.95].

Во-вторых, это вертикальная состав (8) ющая сил трения по лобовой поверхности ножа

$$F_2 = \sigma_{\rm cp} t g \mu \cdot l \sin \delta = \frac{\sigma_{\rm T}}{2} t g \mu \cdot l \sin \delta, \quad (12)$$

где µ – угол внешнего трения грунта по железу.

Подставим в равенство $F = F_1 - F_2$, соответствующие значения из формул (10)...(12), пренебрегая, как указывалось выше, значением σ_0 (знак "-" соответствует разнонаправленности сил F_1 и F_2)

$$h\left(C + tg\theta \frac{\omega_0 + 1}{a} \cdot \frac{u}{2}\right) =$$

$$= \frac{\sigma_{T}}{2} \left(l\cos\delta - tg\mu \cdot l\sin\delta\right)$$
(13)

Подставим значение *h* из формулы (5) и σ_{T} из (8) в равенство (13), опуская σ_{0} ,

$$\frac{2h_{\rm H}}{u} \left(C + \mathrm{tg}\theta \frac{\omega_0 + 1}{a} \cdot \frac{u}{2} \right) =$$

$$= \frac{\left(1 + \omega_0\right)}{2a} u l \cos \delta \left(1 - \mathrm{tg}\mu\mathrm{tg}\delta\right) \qquad (14)$$

Разделив равенство (14) на $l\cos\delta$ и изменив $\frac{h_{\rm H}}{l\cos\delta}$ на $tg\delta$, получим

$$\frac{2 \operatorname{tg} \delta}{u} \left(C + \operatorname{tg} \theta \frac{\omega_0 + 1}{a} \cdot \frac{u}{2} \right) =$$

$$= \frac{(1 + \omega_0)}{2a} u \left(1 - \operatorname{tg} \mu \operatorname{tg} \delta \right).$$
(15)

Теперь помножим (15) на *и* и поделим на $\frac{(1+\omega_0)}{2a}u(1-tg\mu tg\delta)$:

$$\frac{4 \operatorname{tg} \delta \cdot aC}{(1 + \omega_0)(1 - \operatorname{tg} \mu \operatorname{tg} \delta)} + \frac{2 \operatorname{tg} \theta \operatorname{tg} \delta \cdot u}{1 - \operatorname{tg} \mu \operatorname{tg} \delta} = u^2.$$
(16)

В результате получим квадратное уравнение, из которого можно найти *u*,

$$u^2 = Bu + A, \tag{17}$$

где

$$B = \frac{2 \operatorname{tg} \theta \operatorname{tg} \delta}{1 - \operatorname{tg} \mu \operatorname{tg} \delta}, \ A = \frac{4 \operatorname{tg} \delta}{1 - \operatorname{tg} \mu \operatorname{tg} \delta} \frac{aC}{1 + \omega_0}.$$
(18)

Итак, максимальное давление на поверхности ножа $\sigma_{\rm T}$ (в точке *A*) можно найти по формуле (8), подставив в нее единственный положительный корень квадратного уравнения (16).

Проверим результат по экспериментальным данным, взятым из известных источников [3, 15].

Опытные показатели давления грунта вдоль ножа (для площадки износа) [15, С.176, Рис.95], согласно работе Алипова Г.И. при исследовании резания суглинков и глин опытным ножом с динамометрической тележкой (Рис.2).

Угол $\delta = 7^{\circ}$; значение угла внутреннего трения θ и сцепления *C* возьмем промежуточными из приведенных Ветровым [3, C.191, 193]: *C* = 1,0 даH/см², $\theta = 16^{\circ}$, $\mu = 8^{\circ}$ (значения угла внешнего трения μ при таких σ и θ в широких пределах, как видно из формулы (17), на результате не

Рис.2. Эпюра давления на площадке износа ножа (данные Г.И. Алипова)

Fig. 2. Pressure chart on knife wear surface (data by G.I. Alipov)

скажутся). Значение величины *а* находим из Табл.7 работы [15, С.50]:

$$a = -\frac{\Delta\omega}{\Delta\sigma} \left(B \text{ обозначени ях источника } -\frac{\Delta\varepsilon}{\Delta p} \right);$$
$$a \approx \frac{0.015}{0.5} = 0.03 \text{ см}^2/\text{к}\Gamma.$$

Для нашего грунта пористость $\omega_0 \approx 0.6$ [15; С.49, Рис.13].

Вычисляем коэффициенты А и В по формулам (17, 18)

$$\begin{split} A &= \frac{4 \text{tg7}^{\circ}}{1 - \text{tg8}^{\circ} \text{tg7}^{\circ}} \cdot 0,03 \text{ cm}^{2}/\text{k}\Gamma \cdot 1 \text{k}\Gamma/\text{cm}^{2} \approx \\ &\approx \frac{4 \cdot 0,12 \cdot 0,03}{0,99 \cdot 1,6} \approx 0,009; \\ B &= \frac{2 \cdot \text{tg16}^{\circ} \text{tg7}^{\circ}}{1 - \text{tg8}^{\circ} \text{tg7}^{\circ}} \approx \frac{2 \cdot 0,27 \cdot 0,12}{0,99} \approx 0,064 \,. \end{split}$$

Находим корень квадратного уравнения (17)

$$u = \frac{B}{2} + \sqrt{\frac{B^2}{4} + A} \approx$$

\$\approx 0,032 + \sqrt{0,001 + 0,009} \approx 0,13.

По формуле (8) найдем значение максимального давления σ_{τ}

$$\sigma_{\rm T} \approx \frac{1.6}{0.03} \cdot 0.13 \,\mathrm{kT/cm^2} \approx$$
$$\approx 6.9 \cdot 9.8 \cdot 10^4 \,\mathrm{H/m^2} = 0.67 \,\mathrm{MH/m^2}$$

ПІДВОДНІ ТЕХНОЛОГІЇ • 2019 Вип.09, 13-25 Промислова та цивільна інженерія или в пределах непрерывностей 0,57...0,77 MH/m^2 .

Значения $\sigma_{\rm T}$, найденные экспериментально Г.И.Алиповым, составляют в среднем 0,6 MH/м² и в соответствии с линейной регрессией имеют такой же разброс значений.

Решая квадратное уравнение (17) и подставляя его в равенство (8), получим значение максимального давления грунта на поверхность ножа в общем виде

$$\sigma_{\rm T} = \sigma_0 + \frac{\omega_0 + 1}{a} \left[\frac{\mathrm{tg}\theta\mathrm{tg}\delta}{1 - \mathrm{tg}\mu\mathrm{tg}\delta} + \sqrt{\frac{\mathrm{tg}^2\theta\mathrm{tg}^2\delta}{(1 - \mathrm{tg}\mu\mathrm{tg}\delta)^2} + \frac{4\mathrm{tg}\delta aC}{(1 - \mathrm{tg}\mu\mathrm{tg}\delta)(1 + \omega_0)}} \right].$$
(19)

Если первое слагаемое под корнем не превышает 20 % от величины второго (как в рассмотренном случае), то с ошибкой $\beta \leq 10$ % можно использовать упрощенную формулу

$$\sigma_{\rm T} = \sigma_0 + \frac{\omega_0 + 1}{a} \cdot \frac{\mathrm{tg}\theta\mathrm{tg}\delta}{1 - \mathrm{tg}\mu\mathrm{tg}\delta} + 2\sqrt{\frac{\omega_0 + 1}{a} \cdot \frac{\mathrm{tg}\delta \cdot C}{1 - \mathrm{tg}\mu\mathrm{tg}\delta}}.$$
(20)

Замечание 1. Пористость грунта ω_0 в формулах (19), (20) в ряде случаев полезно занижать (в пределах 10 %) для сохранения принятой в нашей модели линейности компрессионной кривой $\omega = \omega(\sigma)$ (Рис. 3), взятой из [15; С.49],

Замечание 2. При значении параметра $u \ge 0,5$ ошибка вычисления максимального давления на ноже $\sigma_{\rm T}$ от замены экспоненты e^u ее приближениями может превышать 20 %. В рассмотренном же примере эта ошибка – порядка 6 %.

Итак, мы определили максимальное давление грунта, возникающее на лобовой поверхности прямого плоского острого но-

ПІДВОДНІ ТЕХНОЛОГІЇ • 2019 Вип.09, 13-25 Промислова та цивільна інженерія жа при щелевом резании. Аналитическая модель может быть использована для оценки состояния грунта при устройстве горизонтальных щелей и противофильтрационных экранов.

Величины давления $\sigma_{\rm T}$, вычисленные по формулам (19) и (20) для суглинков, практически полностью совпадают с экспериментальными значениями, полученными Ю.А.Ветровым, Г.И.Алиповым и другими авторами для площадки износа ножа в аналогичных условиях и имеют такой же разброс значений.

СОПРОТИВЛЕНИЕ ПЕРЕМЕЩЕНИЮ НОЖА

Изучим теперь процесс резания грунта на глубине массива, где поверхностные эффекты не проявляются. Считаем, что скорость ножа невелика, а угол резания достаточно мал (порядка 10...15°). Рассматриваем условие «закрытого» резания, когда поток грунта ограничен с боков в плане. Поэтому грунт деформируется лобовой поверхностью ножа только в вертикальном направлении.

Считаем, что процесс косоугольного резания происходит при отсутствии жесткого ядра уплотнения и нежесткого выпора грунта перед ножом. Прямая AA^{I} на Рис.4 перпендикулярна плоскости резания грунта ABC; плоскости $AA^{I}B$ и $A^{II}A^{III}B^{II}$ параллельны (это поверхности скольжения грунта); δ – угол резания грунта; γ – угол резания в плане.

Puc.4. Нож, установленный под углом к траектории движенияFig. 4. Knife mounted at an angle to the trajectory of movement

Рис.5. Деформирование грунта перед ножом **Fig. 5**. Deformation of the soil in front of the knife

Постановка задачи

Из литературы [3, C.53, 58] известно, что при $\delta \le 20^{\circ}...30^{\circ}$ жесткое или нежесткое («чулок») ядро выпора отсутствует. На Рис.5, *а* показан нож с ядром уплотнения (выпором, наростом) и пластической зоной деформирования грунта («чулком»); на Рис.5, δ – ядра уплотнения нет (точнее, «чулок» не выходит за прямую кромку).

Рассматриваемый нами случай (Рис.5, δ) приводит к предположению о том, что эпюра давлений на переднюю грань ножа имеет приблизительно треугольную форму (Рис.6). Здесь σ_0 – геостатическое давление (в естественном состоянии грунта), постоянное для данной глубины резания; $\sigma_{\rm B}$ – давление у верхней кромки ножа [16].

Поскольку выдавливание грунта происходит через верхнюю кромку, считаем, что давление σ_0 существенно меньше $\sigma_{\rm B}$, и в окончательные формулы не войдет (σ_0 является постоянной дополнительной составляющей в общем давлении, действующем на нож со стороны грунта, не зависимой от самого процесса резания).

Рис.6. Эпюра давления на передней грани ножа **Fig. 6**. Pressure chart on the knife front

Тогда среднее давление на лобовой грани ножа:

$$\sigma_{\rm cp} = \frac{\sigma_{\rm B}}{2}.$$
 (21)

Считаем, что ширина ножа (размер передней кромки) BC = b в несколько раз больше длины ножа (размера боковой кромки) $A^{I}B = l$.

Определим давление $\sigma_{\rm B}$ у верхней кромки ножа и действующие на него силы через геометрические параметры резания, угол трения грунта по ножу μ и собственные характеристики грунта.

Взаимосвязь давления ов с изменением пористости и размерами зоны деформации

Представим положение ножа в грунте на Рис.7. Здесь $h_{\rm H}$ – высота ножа, равная высоте прорези; h – толщина зоны деформации над прорезью; M – некоторая точка в этой зоне, находящаяся на расстоянии z от ее верхней границы.

Обозначим: оо, ро, оо – давление, плот-

Рис.7. Параметры зоны деформации грунта перед ножом

Fig. 7. Parameters of the soil deformation zone in front of the knife

ность и коэффициент пористости вне зоны деформации; σ , ρ , ω – давление, плотность и коэффициент пористости в точке M; $\sigma_{\rm B}$, $\rho_{\rm B}$, $\omega_{\rm B}$ – давление, плотность и коэффициент пористости в точке A^{III} верхней кромки передней грани ножа.

Пористость играет основную роль в сопротивлении резанию грунтов [4, С.130]. Запишем соотношения, аналогично рассмотренным выше:

$$1 + \omega = \frac{V}{V_{\rm T}} = \frac{m/\rho}{m/\rho_{\rm T}} = \frac{\rho_{\rm T}}{\rho},$$
 (22)

где V – объем элемента грунта массой *m*; $V_{\rm T}$ – объем твердой фазы (без пор) 'njuj элемента; $\rho_{\rm T}$ – плотность его твердой фазы (определение ω);

$$\frac{d\omega}{d\sigma} = -a\,,\tag{23}$$

где а – коэффициент уплотнения [15, С.48].

$$\rho = \rho_{\rm B} e^{-k(h-z)}, \qquad (24)$$

где *k* – коэффициент, зависящий от грунта и ножа [15, C.52].

В частном случае (при *z* = 0) из формулы (24)

$$\rho_0 = \rho_{\rm B} e^{-kh} \tag{25},$$

и, деля (25) на (24), получаем:

$$\frac{\rho_0}{\rho} = e^{-kz} \,. \tag{26}$$

Теперь из формулы (22) будет:

$$1 + \omega_0 = \frac{\rho_{\rm T}}{\rho_0},$$
 (27),

а из (22), (27) и (26) будет:

$$\omega - \omega_0 = \frac{\rho_m}{\rho} - \frac{\rho_m}{\rho_0} = \frac{\rho_m}{\rho_0} \left(\frac{\rho_m}{\rho} - 1\right) = . (28)$$
$$= (1 + \omega_0) \left(\varepsilon^{-\kappa\zeta} - 1\right)$$

Считая коэффициент *а* в пределах нашего рассмотрения постоянным, из (23) и (28) можно получить (с учетом того, что σ_0 опускаем при сравнении с σ_B)

$$\sigma_{\scriptscriptstyle B} \approx \sigma - \sigma_{\scriptscriptstyle 0} = -\frac{1}{a} (\omega - \omega_{\scriptscriptstyle 0}) = , \qquad (29)$$
$$= \frac{1 + \omega_{\scriptscriptstyle 0}}{a} (1 - e^{-kz})$$

в частном случае (при z = h у верхней кромки ножа):

$$\sigma_{\rm B} = \frac{1+\omega_0}{a} \left(1-e^{-kh}\right). \tag{30}$$

Из закона сохранения массы, интегрируя плотность грунта вдоль вертикали до деформирования грунта и после (см. формулу (26)), имеем

$$\int_{0}^{h_{\rm H}+h} \rho_0 dz = \int_{0}^{h} \rho_0 e^{kz} dz \,,$$

$$\rho_0(h_{\rm H}+h) = \rho_0\left(\frac{e^{kh}-1}{k}\right)$$

Находим здесь $h_{\rm H}$:

или

$$h_{\rm H} = \frac{e^{kh} - 1 - kh}{k} \,. \tag{31}$$

Считаем аналогично [8, С.86, 87], что скольжение частиц грунта происходит в плоскостях, параллельных *АА^IB*.

Так как реально [15, C.49] значение выражения $\left| \frac{\omega - \omega_0}{1 + \omega_0} \right| \le 0, 4 \dots 0, 5$, то из формулы

(28) следует, что экспоненту

$$e^t = 1 + t + \frac{t^2}{2} + \dots$$

можно разложить в ряд, ограничиваясь при необходимости одним или двумя членами ряда.

ПІДВОДНІ ТЕХНОЛОГІЇ • 2019 Вип.09, 13-25 Промислова та цивільна інженерія Поэтому формулы (30) и (31) будем использовать в виде, соответствующем (t = kh):

$$\sigma_{\rm B} = \frac{1 + \omega_0}{a} t \tag{32}$$

И

$$h_{\rm H} = h \frac{t}{2} \,, \tag{33}$$

(поскольку

$$\frac{e^{kh} - 1 - kh}{k} \approx \frac{1 + kh + \frac{(kh)^2}{2} - 1 - kh}{k} = \frac{h^2k}{2} = h\frac{t}{2}).$$

Силы, действующие на единичную
площадку передней грани ножа

Обозначим векторы и оси координат на Рис.8 (точки *А^{II}*, *А^{III}*, *B^{II}* соответствуют обозначенным на Рис.4). Система координат – прямоугольная декартова.

Векторы $\ell_1 = (1, 0, 0); \ell_2 = (\sin\gamma, \cos\gamma, 0);$ $\ell_3 = (-\cos\delta, 0, \sin\delta)$. По определению векторного произведения вектор

$$\ell_2 \times \ell_3 = \begin{vmatrix} i & j & k \\ \sin \gamma & \cos \gamma & 0 \\ -\cos \delta & 0 & \sin \delta \end{vmatrix} = \\ = (\sin \delta \cos \gamma, -\sin \delta \sin \gamma, \cos \delta \cos \gamma).$$

перпендикулярен к плоскости ножа и имеет длину (определяемую прямым вычислени-ем):

$$f = \sqrt{1 - \sin^2 \gamma \cos^2 \delta} \tag{34}$$

Таким образом, находим составляющие давления σ на единичную площадку плос-кости ножа:

$$\sigma_{x} = \frac{-1}{f} \sin \delta \cos \gamma \cdot \sigma; \ \sigma_{y} = \frac{1}{f} \sin \delta \sin \gamma \cdot \sigma;$$
$$\sigma_{z} = \frac{-1}{f} \cos \delta \cos \gamma \cdot \sigma, \qquad (35)$$

где коэффициенты при σ совпадают с направляющими косинусами нормали к плоскости ножа. Соответственно составляющие силы трения будут (на Рис.8 – $\sigma_t // \ell_3$, $\sigma \perp XOY$):

$$\sigma_{tx} = -\sigma tg\mu \cos\delta;$$

$$\sigma_{Ty} = 0;$$

$$\sigma_{tz} = \sigma tg\mu \sin\delta.$$
(36)

Условие равновесия грунта над плоскостью ножа и определение напряжения ов

Рассмотрим слой грунта толщиной dy = 1 над плоскостью ножа в пределах зоны деформации. Это косая призма $A^{III}A^{IV}B^{IV}B^{II}D^{III}D^{IV}B^{V}B^{III}$ (Рис.9).

Координаты и составляющие сил были рассмотрены выше (в п. 3 статьи) для плос-

Рис.8. Схема сил, действующих на нож **Fig. 8**. Scheme of forces acting on a knife

кости ножа. Для грани $A^{III}D^{III}B^{III}B^{II}$ следует поменять знаки составляющих. Вдоль грани $A^{III}A^{IV}D^{IV}D^{III}$ происходит разгрузка с вертикальным сдвигом накопленного напряжения. По закону Кулона-Мора касательное напряжение на элементе этой грани направлено противоположно оси *OZ* // $A^{II}A^{III}$ и равно:

$$\sigma_{\kappa} = c + \sigma \, \mathrm{tg}\Theta, \qquad (37)$$

где c – сцепление; σ – давление (нормальное напряжение); Θ – угол внутреннего трения.

Полная составляющая вдоль оси *OZ* сил, действующих на эту грань, будет $S_{A^{II}A^{IV}D^{IV}D^{III}} \cdot \sigma_{\kappa}^{cp}$ (площадь, умноженная на среднее касательное напряжение, давление же перпендикулярно *OZ*). Площадь равна $\frac{hdy}{\cos \gamma} = \frac{h}{\cos \gamma}$ (так как dy = 1). Исходя из формул (29), (30) и возможности линей-

из формул (29), (30) и возможности линеиного приближения $1 - e^{-kz} \approx kz$, о котором говорилось выше, давление

Рис.9. Призма грунта на лобовой грани ножа **Fig. 9**. Prism of soil on the frontal edge of a knife

Итак, искомая составляющая равна

$$\frac{h}{\cos\gamma} \left(c + \frac{\sigma_{\rm B}}{2} \mathrm{tg}\Theta \right). \tag{38}$$

Она должна равняться вертикальной составляющей силы, действующей на переднюю грань ножа на участке, где dy = 1. Это следует из предположения об отсутствии соответствующих сил на гранях $A^{IV}D^{IV}B^{V}B^{IV}$ и $B^{II}B^{II}B^{V}B^{IV}$, так как геостатическое давление σ_0 не учитываем. Боковыми эффектами также пренебрегаем, поскольку ширина ножа *b* существенно больше его длины *l* и все площадки скольжения идентичны).

Площадь передней грани ножа S_н

$$S_{\rm H} = S_{\rm \Pi p} / \cos \varphi_z$$
,

где площадь проекции этой грани на плоскость *ABC* равна $S_{np} = l \cos \delta \cdot b \cos \gamma$ и направляющий косинус нормали грани с осью *OZ* равен $\cos \varphi_z = \frac{1}{f} \cos \delta \cdot \cos \gamma$ (из формулы 35). Значит

$$S_{\rm H} = lbf \ . \tag{39}$$

Вертикальные составляющие сил давления и трения получим из формул (35) и (36), меняя знак на противоположный:

$$\sigma_z = \frac{1}{f} \sigma \cos \delta \cos \gamma; \quad \sigma_{\rm TZ} = -\sigma t g \mu \sin \delta.$$

Среднее напряжение, согласно предположению (21), $\sigma_{cp} = \frac{\sigma_B}{2}$.

Значение вертикальной составляющей силы (со стороны передней грани ножа)

$$S_{\rm H} \left(\sigma_{z \, \rm cp} - \sigma_{{\rm T} z \, \rm cp} \right) =$$

= $lbf \frac{\sigma_{\rm B}}{2} \left[\frac{1}{f} \cos \delta \cos \gamma - tg\mu \sin \delta \right] = (40)$
= $lb \cos \delta \cos \gamma \frac{\sigma_{\rm B}}{2} \left[1 - \frac{ftg\mu tg\delta}{\cos \gamma} \right].$

Разделив равенство (40) на $b\cos\gamma$, получим значение этой силы на участке dy = 1. Приравняем его значению (38):

$$l\cos\delta\frac{\sigma_{\scriptscriptstyle B}}{2}\left[1-\frac{ftg\mu}{\cos\gamma}tg\delta\right] = \frac{h}{\cos\gamma}\left[c+\frac{\sigma_{\scriptscriptstyle B}}{2}tg\Theta\right]$$
(41)

Так как $l = \frac{h_{\rm H}}{\sin \delta}$; а $h = \frac{2h_{\rm H}}{t}$ (из формулы (33)), то, подставляя эти выражения в формулу (41) и сокращая на $h_{\rm H}$, получим

$$\frac{\sigma_{\rm B}}{2 {\rm tg}\delta} \left[1 - \frac{f {\rm tg}\mu}{\cos\gamma} {\rm tg}\delta \right] = \frac{2}{t \cos\gamma} \left[c + \frac{\sigma_{\rm B}}{2} {\rm tg}\Theta \right].$$

Подставляя в последнее выражение $t = \frac{\sigma_{\rm B} a}{1 + \omega_0}$, из формулы (32) получим

$$\frac{\sigma_{\rm B} \left[1 - \frac{f {\rm tg} \mu}{\cos \gamma} {\rm tg} \delta \right]}{2 {\rm tg} \delta} = .$$
(42)
$$= \frac{2 \left(1 + \omega_0 \right)}{\sigma_{\rm B} a} \left[c + \frac{\sigma_{\rm B}}{2} {\rm tg} \Theta \right]$$

Обозначив для кратности в формуле (42) величины

$$\delta'' = \frac{\mathrm{tg}\delta}{1 - \frac{f\mathrm{tg}\mu}{\mathrm{cos}\gamma}\mathrm{tg}\delta}; \ c' = \frac{2(1 + \omega_0)c}{a};$$
$$\Theta' = \frac{1 + \omega_0}{a}\mathrm{tg}\Theta, \qquad (43)$$

получим квадратное уравнение для напряжения $\sigma_{\rm B}$:

$$\sigma_{\rm B}^2 = 2\delta'' [c' + \sigma_{\rm B}\Theta']. \tag{44}$$

Для анализа уравнения (44) приведем следующие математические рассуждения [10, 14]. Запишем упрощенное квадратное уравнение $\sigma^2 = 1 + 2\alpha\sigma$, которое имеет корень $\alpha + \sqrt{1 + \alpha^2}$ (с помощью производной

легко проверить, что $0.8 \le \frac{\alpha + \sqrt{1 + \alpha^2}}{2\alpha + 1} \le 1$ (для $\alpha > 0$), то есть

$$\sigma = 0.9[2\alpha + 1] = 1.8\alpha + 0.9$$

дает корень с ошибкой не более 10 %).

Корень этого уравнения переходит в корень уравнения (44) при некотором изменении масштаба единиц. Аналог формулы $\sigma = 1.8\alpha + 0.9\sqrt{1}$ для уравнения (44)

$$\sigma_{\rm B} = 1.8\delta''\Theta' + \sqrt{1.6\delta''c'} \tag{45}$$

или непосредственно через параметры ножа и грунта, из равенств (43) получим давление у верхней кромки ножа

$$\sigma_{\rm B} = \frac{1,8 \text{tg} \delta \text{tg} \Theta (1 + \omega_0) \cos \gamma}{a \left(\cos \gamma - \sqrt{1 - \sin^2 \gamma \cos^2 \delta} \right) \text{tg} \mu \text{tg} \delta} + \sqrt{\frac{3,2 \text{tg} \delta (1 + \omega_0) c}{a \left(\cos \gamma - \sqrt{1 - \sin^2 \gamma \cos^2 \delta} \right) \text{tg} \mu \text{tg} \delta}}.$$
(46)

Если
 $\mu,\,\delta,\,\gamma$ малы (например, когда δ и
 $\mu \leq 25^\circ$) в такой степени, что

tg
$$\delta$$
 tg $\mu \le 0,2$ и $\gamma \le 30^\circ$, (47)

то можно пользоваться упрощенной формулой

$$\sigma_{\rm B} = \frac{1.8}{a} \operatorname{tg} \delta \operatorname{tg} \Theta (1 + \omega_0) + \sqrt{\frac{3.2}{a} \operatorname{tg} \delta (1 + \omega_0) c} .$$
(48)

Составляющие сил, действующих на лобовую поверхность ножа

Находим вертикальную составляющую F_z суммарной силы, подставляя выражение (46) в равенство (40), где $T = \cos \gamma - f \, \text{tg} \mu \, \text{tg} \delta$,

$$F_{z} = lb \frac{1}{2} \begin{bmatrix} \frac{1.8 \operatorname{tg} \delta \operatorname{tg} \Theta (1 + \omega_{0}) \cos \gamma}{aT} + \\ + \sqrt{\frac{3.2 \operatorname{tg} \delta (1 + \omega_{0}) c}{aT}} \end{bmatrix} \cos \delta T = \\ = lb \begin{bmatrix} \frac{0.9}{a} \sin \delta \operatorname{tg} \Theta (1 + \omega_{0}) \cos \gamma + \\ + \sqrt{\frac{0.9 \sin 2\delta (1 + \omega_{0}) cT}{a}} \end{bmatrix}$$

или, раскрывая значение Т,

$$F_{z} = lb \begin{bmatrix} \frac{0,9(1+\omega_{0})}{a} \sin \delta \cos \gamma \, \mathrm{tg}\Theta + \\ + \sqrt{\frac{0,4(1+\omega_{0})}{a}} \sin 2\delta \times \\ \times \left(\cos \gamma - \sqrt{1-\sin^{2} \gamma \cos^{2} \delta} \, \mathrm{tg}\mu \mathrm{tg}\delta\right)c \end{bmatrix}$$
(49)

Упрощенный вариант значения составляющей F_z при условии (27):

$$F_{z} = lb \begin{bmatrix} \frac{0,9(1+\omega_{0})}{a} \sin \delta tg\Theta + \\ +\sqrt{\frac{0,4(1+\omega_{0})c\sin 2\delta}{a}} \end{bmatrix}.$$
 (50)

(Заметим, что составляющая силы F_z направлена вниз).

Боковая составляющая сопротивления ножу $F_y = S_H \sigma_{ycp}$. Подставляя сюда значения формул (39), (35), (21), (46), получим

$$F_{y} = lbf \frac{1}{f} \sin \delta \sin \gamma \frac{\sigma_{\scriptscriptstyle B}}{2} = \\ = lb \left[\frac{0,45 \sin^{2} \delta \sin 2\gamma (1+\omega_{\scriptscriptstyle 0}) \operatorname{tg}\Theta}{\cos \delta \cdot aT} + \right], \\ + \sqrt{\frac{0,8 \sin^{3} \delta (1+\omega_{\scriptscriptstyle 0}) c \sin^{2} \gamma}{\cos \delta \cdot aT}} \right],$$

то есть

$$F_{y} = lb \begin{bmatrix} 0,45\sin^{2}\delta\sin 2\gamma \frac{(1+\omega_{0})}{a} tg\Theta \\ \frac{1}{\cos\delta\left(\cos\gamma - \sqrt{1-\sin^{2}\gamma\cos^{2}\delta} tg\mu tg\delta\right)} + \frac{1}{\sqrt{\frac{0,8\sin^{3}\delta\left(1+\omega_{0}\right)c\sin^{2}\gamma}{a\cos\delta\left(\cos\gamma - \sqrt{1-\sin^{2}\gamma\cos^{2}\delta} tg\mu tg\delta\right)}}} \end{bmatrix}$$
(51)

Упрощенный вариант при условии (47):

$$F_{y} = lb \begin{bmatrix} 0,45 \frac{\sin^{2} \delta}{\cos \delta} \frac{(1+\omega_{0})}{a} \sin 2\gamma t g\Theta + \\ +\sqrt{\frac{0,8 \sin^{3} \delta}{\cos \delta} \frac{(1+\omega_{0})}{a} c \sin^{2} \gamma} \end{bmatrix}.$$
(52)

(Составляющая F_y направлена вдоль оси OY).

Горизонтальная составляющая (сила резания грунта)

$$\begin{split} F_{x} &= S_{\text{H}} \left| \sigma_{x \text{ cp}} + \sigma_{\text{tx cp}} \right| = \\ &= lbf \left[\frac{1}{f} \sin \delta \cos \gamma \frac{\sigma_{\text{B}}}{2} + \text{tg}\mu \cos \delta \frac{\sigma_{\text{B}}}{2} \right] = \\ &= lb \left[\sin \delta \cos \gamma + f \text{tg}\mu \cos \delta \right] \times \\ &\times \left[\frac{0.9 \text{tg} \delta \text{tg} \Theta (1 + \omega_{0}) \cos \gamma}{aT} + \right] \times \left[\frac{0.8 \text{tg} \delta (1 + \omega_{0}) \cos \gamma}{a} + \right] . \end{split}$$

То есть сила резания равна

$$F_{x} = lb \left[tg \delta \cos \gamma + ftg \mu \right] \times \\ \times \left[\frac{0.9(1+\omega_{0})}{aT} \sin \delta \cos \gamma tg \Theta + \right] + \sqrt{\frac{0.4 \sin 2\delta}{aT} (1+\omega_{0})c} \right], \quad (53)$$

где

$$f = \sqrt{1 - \sin^2 \gamma \cos^2 \delta}$$
; $T = \cos \gamma - f t g \mu t g \delta$.

Упрощенный вариант силы резания, при условии (47), записывается так:

$$F_{x} = lbtg(\delta + \mu) \times$$

$$\times \qquad (54)$$

$$\times \left[\frac{0,9(1 + \omega_{0})}{a} \sin \delta \cos \gamma tg\Theta + \right]$$

$$+ \sqrt{\frac{0,4(1 + \omega_{0})c}{a} \sin 2\delta}$$

или

$$F_{x} = 0.9lbtg(\delta + \mu)R[R\cos\gamma tg\Theta + \sqrt{c}], \quad (55)$$

где
$$R = \sqrt{\frac{1+\omega_0}{a}}\sin\delta$$
.

выводы

1. Разработана модель щелевого резания грунта пространственно ориентированным (установленным под углом к траектории его движения) острым ножом при отсутствии бокового выпора, когда весь грунт в потоке, уплотняясь, вдавливается в своды прорези.

2. Установлена зависимость давления на лобовую грань ножа от изменения пористости грунта, угла внешнего трения и размеров зоны деформации.

3. Аналитически определены составляющие сил, действующих на единичную площадку лобовой грани ножа, и полная сила резания грунта.

ЛІТЕРАТУРА

- 1. Баладинский В.Л., Сукач М.К., 1999. Подводные строительные работы: учеб. пособ. Киев, ИСМО, 224.
- 2. Баловнев В.И., 1981. Моделирование процессов взаимодействия со средой рабочих органов дорожно-строительных машин, 1981.

- 3. Ветров Ю.А., 1971. Резание грунтов землеройными машинами. Москва, Машиностроение, 360.
- 4. Вялов С.С., 1978. Реологические основы механики грунтов. Москва, Высшая школа, 447.
- Кравець С.В., 1999. Грунтозахисні та енергозберігаючі машини для прокладки підземних комунікацій. Рівне, Видавництво РДТУ, 277.
- Кравець С.В., 2008. Теорія руйнування робочих середовищ. Навч. посіб. Рівне, НУВГП, 124.
- 7. Кравець С.В., Ткачук В.Ф., Маланчук 3.Р., 2007. Многоярусное разрушение массива горных пород. Монография, Ровно, НУВГП, 272.
- 8. Смирнов В.Н., 1993. Повышение эффективности рабочих органов землеройных машин. Киев, Полиэкс, 144
- 9. Сукач М.К., 2004. Рабочие процессы глубоководных машин. Київ, Наукова думка, 364.
- Сукач М.К., Пузаков Д.В., 2009. Опір робочого середовища просторово орієнтованому ножу. Київ, КНУБА, Матеріали 3-ї наук.-практ. конф. молодих вчених КНУБА, 46.
- 11. Сукач М.К., Лисак С.І., 2010. Дослідження кінематичних параметрів процесу роботи траншейної машини. Матеріали 2 міжнар. наук.практ. конф. Сучасні інформаційні та інноваційні технології на транспорті (МІNTT-2010), Херсон, ХДМІ, 22.
- 12. Сукач М.К., Новіков Р.Ю., 2012. Технологія утворення щілин під техногенними об'єктами. Матеріали 73-ї наук.-практ. конф. КНУБА, Київ, 24.
- 13. Сукач М.К., Литвиненко І.М., 2013. Вимірювання параметрів косокутного різання масиву ґрунту. Матеріали 7-ї наук. конф. молодих вчених КНУБА, 14.
- 14. Сукач М.К., Комоцька С.Ю., 2017. Прогнозування зусиль різання ґрунтів по геологічним кернам. Матеріали Ш міжнар. наук.практ. конф. Underwater Technologies 2017, 28.
- 15. Уродов В.И., 1972. Физические основы глубокого резания грунтов. Минск, Наука и техника, 232.
- 16. Хмара Л.А., Кравець С.В., Нічке В.В. та ін., 2010. Машини для земляних робіт. Рівне-Дніпропетровськ-Харків, 557.

REFERENCES

- 1. Baladinskij V.L., Sukach M.K., 1999. Podvodnye stroitel'nye raboty: ucheb. posob. Kiev, ISMO, 224 (in Russian).
- 2. **Balovnev V.I., 1981**. Modelirovanie processov vzaimodejstvija so sredoj ra-bochih organov dorozhno-stroitel'nyh mashin, 1981 (in Russian).
- 3. Vetrov Ju.A., 1971. Rezanie gruntov zemlerojnymi mashinami. Moskva, Mashinostroenie, 360 (in Russian).
- 4. **Vjalov S.S., 1978**. Reologicheskie osnovy mehaniki gruntov. Moskva, Vysshaja shko-la, 447 (in Russian).
- 5. **Kravec' S.V., 1999**. Gruntozahisni ta energozberigajuchi mashini dlja prokladki pidzemnih komunikacij. Rivne, Vidavnictvo RDTU, 277 (in Ukrainian).
- 6. **Kravec' S.V., 2008**. Teorija rujnuvannja robochih seredovishh. Navch. posib. Rivne, NUVGP, 124 (in Ukrainian).
- Kravec' S.V., Tkachuk V.F., Malanchuk Z.R., 2007. Mnogojarusnoe razrushenie massiva gornyh porod. Monografija, Rovno, NUVGP, 272 (in Russian).
- 8. **Smirnov V.N., 1993**. Povyshenie jeffektivnosti rabochih organov zemlerojnyh mashin. Kiev, Polijeks, 144 (in Russian).
- 9. Sukach M.K., 2004. Rabochie processy glubokovodnyh mashin. Kyiv, Naukova dumka, 364 (in Russian).
- 10.**Sukach M.K., Puzakov D.V., 2009**. Opir robochogo seredovishha prostorovo orientovanomu nozhu. Kiïv, KNUBA, Materialy 3-ï nauk.-prakt. konf. molodih vchenih KNUBA, 46 (in Ukrainian).
- 11. Sukach M.K., Lisak S.I., 2010. Doslidzhennja kinematichnih parametriv procesu roboti transhejnoï mashini. Materialy 2 mizhnar. nauk.-prakt. konf. Suchasni informacijni ta innovacijni tehnologiï na transporti (MINTT-2010), Herson, HDMI, 22 (in Ukrainian).
- 12. Sukach M.K., Novikov R.Ju., 2012. Tehnologija utvorennja shhilin pid tehnogennymy ob'ektamy. Materiali 73-ï nauk.prakt. konf. KNUBA, Kiïv, 24 (in Ukrainian).
- 13.Sukach M.K., Litvinenko I.M., 2013. Vimirjuvannja parametriv kosokutnogo rizannja masivu rruntu. Materialy 7-ï nauk. konf. molodyh vchenih KNUBA, 14 (in Ukrainian).
- 14.**Sukach M.K., Komoc'ka S.Ju., 2017**. Prognozuvannja zusil' rizannja rruntiv po geologichnim kernam. Materiali III mizhnar.

nauk.-prakt. konf. Underwater Technologies 2017, 28 (in Ukrainian).

- 15. Urodov V.I., 1972. Fizicheskie osnovy glubokogo rezanija gruntov. Minsk, Nauka i tehnika, 232 (in Russian).
- 16.Hmara L.A., Kravec' S.V., Nichke V.V. ta in., 2010. Mashini dlja zemljanih robit. Rivne– Dnipropetrovs'k–Harkiv, 557 (in Ukrainian).

Crevice cutting model under geostatic pressure

Mykhailo Sukach

Abstract. To create soil anti-filter screens, it is necessary to provide a horizontal gap device of a sufficiently large size to the soil mass. The use of traction working bodies such as a dozer blade requires an assessment of the pressure of the soil on the knife and the power characteristics of the working process. The pressure value affects the deformability of the soil in the area of the working body, the change in the porosity of the medium, the conditions for the formation and stability of the arches, the removal of soil into the lateral technological slots, etc. The task is complicated by the lack of visual control of slot cutting at depth and process control.

In this article, we have obtained an analytical model of soil pressure on the frontal surface of a straight sharp knife with slot cutting. The forces acting on the knife installed at an angle to the path of its movement are determined, and the cutting force is determined depending on the change in porosity and size of the soil deformation zone in the absence of lateral outflow.

According to preliminary estimates, the calculated values of these parameters coincide with the experimental data of known scientists for the knife wear area, which will make it possible to further evaluate the traction resistance of the cutting machine resistance, to control the processes of arch formation and soil removal on the sides of the working body.

Keywords: slot cutting, bulldozer blade, geostatic pressure, soil deformation, lateral discharge.