ТЕОРІЯ ТА ІСТОРІЯ АРХІТЕКТУРИ

УДК 515.2

С. М. Ковальов

доктор технічних наук, професор завідувач кафедри нарисної геометрії та інженерної графіки Київського національного університету будівництва і архітектури

С. І. Ботвіновська

кандидат технічних наук, доцент кафедри нарисної геометрії та інженерної графіки КНУБА

О. В. Мостовенко

кандидат технічних наук, доцент кафедри нарисної геометрії та інженерної графіки КНУБА

АНАЛІЗ ДИСКРЕТНИХ КАРКАСІВ ПАРАБОЛОЇДІВ ДРУГОГО ПОРЯДКУ З АФІННО ПЕРЕТВОРЕНОЮ СІТКОЮ У ПЛАНІ

<u>Анотація</u>. в статті проаналізовано вплив параметрів дискретної сітки в плані при формуванні каркасів поверхонь параболоїдів другого порядку статикогеометричним методом на величину зовнішнього формоутворюючого зусилля, що прикладається до вузлів сітки, якщо розподіл зовнішнього навантаження рівномірний.

<u>Ключові слова:</u> дискретний каркас; статико-геометричний метод; врівноважені сітки; зовнішнє навантаження; параболоїд

<u>Вступ.</u> Врівноважені сітки дискретних каркасів поверхонь, що формуються за допомогою статико геометричного методу (СГМ) [1] є основою ескізного проектування криволінійних покриттів будівель та споруд [3]. СГМ є наочною інтерпретацією методу скінчених різниць, тому дозволяє створити врівноважені сітки на довільному опорному контурі. При цьому, комірки сітки, яку топологічно задано у плані, можуть приймати різну форму. Як було зазначено в роботі [2], використання алгебраїчних поверхонь параболічного типу, дискретними аналогами яких будуть врівноважені сітки, дозволить розширити можливості СГМ.

<u>Мета статті та постановка задачі.</u> Основна мета роботи – виявити зв'язок між зовнішнім формоутворюючим навантаженням на вузли дискретної сітки при

формуванні каркасів поверхонь параболоїдів другого порядку та параметрами форми сітки у плані, комірки якої можна отримати афінним перетворенням квадрату.

<u>Аналіз основних досліджень і публікацій.</u> В роботі [3] на вузли дискретної сітки з квадратними в плані комірками під дією дійсного навантаження

$$kP = \frac{h^2(p_2 \pm p_1)}{p_2 \cdot p_1}$$

на кожний вузол сітки, що точно належить поверхні еліптичного або гіперболічного параболоїда

$$z = \frac{\chi^2}{2p_1} \pm \frac{y^2}{2p_2}$$
(1)

де *p*₁, *p*₂ –параметри відповідно твірної та напрямної парабол параболоїду;

k – коефіцієнти пропорційності;

h – шаг сітки в плані.

Аплікати вузлів сітки визначаються при розв'язанні системи рівнянь управління рівновагою вузлів:

$$z_{i-1,j} + z_{i+1,j} + z_{j+1} + z_{i,j-1} - 4z_{i,j} + kP = 0$$
⁽²⁾

де *i*, *j* – нумерація вузлів сітки.

В роботі [4] доведено, що навантаження *kP* на кожний вузол дискретної сітки параболоїду (1) з квадратними клітинами у плані, прямо пропорційне площі клітини у плані. В роботі [5] показано, що афінне перетворення врівноваженої сітки не порушує її рівноваги.

У відомих публікаціях не проводився аналіз впливу параметрів сітки у план на величину зовнішнього формоутворюючого зусилля *kP*, прикладеного до кожного вузла врівноваженої сітки.

<u>Основна частина.</u> Для більшої наочності параметри p_1 та p_2 у рівнянні (1) параболоїду замінено параметрами $p_1 = \frac{c}{2a^2}$ та $p_2 = \frac{d}{2b^2}$, які зображено на рис. 2, 3. У такому випадку рівняння еліптичного та гіперболічного параболоїдів відповідно прийматиме вигляд:

$$z = \frac{cx^2}{a^2} + \frac{dy^2}{b^2}$$
(3)

$$z = \frac{cx^2}{a^2} - \frac{dy^2}{b^2}$$
(4)

або

$$z = \frac{cx^2}{a^2} \pm \frac{dy^2}{b^2} \tag{5}$$

Розглянемо довільну регулярну дискретну сітку в плані з клітинами у вигляді однакових паралелограмів із сторонами *s* та *t*. Лінії сітки нахилено під кутами відповідно α та β до осі OX (рис.1).

Рис. 1. Сітка в плані з клітинами у вигляді паралелограмів

Виберемо довільний вузол $M(X=X_{i,j}; Y=Y_{i,j})$. Абсциси та ординати вузлів A, B, C і D які суміжні з вузлом M, відповідно мають вигляд:

$x_{i-1,j} = x_{i,j} - s \cdot \cos \alpha$	$y_{i-1,j} = y_{i,j} - s \cdot \sin \alpha$	
$x_{i+1,j} = x_{i,j} + s \cdot \cos \alpha$	$y_{i-1,j} = y_{i,j} + s \cdot \sin \alpha$	(6)
$x_{i,j-1} = x_{i,j} - t \cdot \cos \beta$	$y_{i-1,j} = y_{i,j} - t \cdot \sin \beta$	
$x_{i,j+1} = x_{i,j} + t \cdot \cos \beta$	$y_{i-1,j} = y_{i,j} + t \cdot \sin \beta$	

Після підстановки (6) у (5) можна буде визначити аплікати п'яти суміжних вузлів зірки сітки:

$$z_{i,j} = \frac{cx_{i,j}^{2}}{a^{2}} \pm \frac{dy_{i,j}^{2}}{b^{2}}$$

$$z_{i-1,j} = \frac{c(x_{i,j} - s \cdot \cos\alpha)^{2}}{a^{2}} \pm \frac{d(y_{i,j} + s \cdot \sin\alpha)^{2}}{b^{2}}$$

$$z_{i+1,j} = \frac{c(x_{i,j} + s \cdot \cos\alpha)^{2}}{a^{2}} \pm \frac{d(y_{i,j} + s \cdot \sin\alpha)^{2}}{b^{2}}$$

$$z_{i,j-1} = \frac{c(x_{i,j} - t \cdot \cos\beta)^{2}}{a^{2}} \pm \frac{d(y_{i,j} - t \cdot \sin\beta)^{2}}{b^{2}}$$

$$z_{i,j+1} = \frac{c(x_{i,j} + t \cdot \cos\beta)^{2}}{a^{2}} \pm \frac{d(y_{i,j} + t \cdot \sin\beta)^{2}}{b^{2}}$$
(7)

Зовнішнє зусилля *kP* рівномірно розподіленого навантаження на вузли визначається після підстановки (7) у рівняння (2) рівноваги вузла сітки:

Рис. 2. Еліптичний параболоїд на ромбічній в плані сітці

Афінним перетворенням як сітки у плані, так і поверхонь (3) та (4) можемо отримати різні окремі випадки, яким відповідають різні зовнішні зусилля *kP* рівномірно розподіленого навантаження:

1. Комірка сітки у плані приймає форму ромба (t = s):

$$kP = 4s^2 \left[\frac{c(\cos^2 \alpha + \cos^2 \beta)}{a^2} \pm \frac{d(\sin^2 \alpha + \sin^2 \beta)}{b^2} \right]$$
(9)

Якщо діагоналі ромба паралельні координатним осям відповідно *OX* та *OY* (рис.2), то формула (9) спрощується:

$$kP = 8s^2 \left[\frac{c \cdot \cos^2 \alpha}{a^2} \pm \frac{d \cdot \sin^2 \alpha}{b^2} \right]$$
(10)

2. Комірка сітки у плані приймає форму прямокутника $(\sin\beta = \cos\alpha; \cos\beta = -\sin\alpha)$:

$$kP = \frac{2(b^2 \cdot c \cdot t \pm a^2 \cdot d \cdot s)}{a^2 b^2} \tag{11}$$

3. Комірка сітки у плані приймає форму квадрату, коли маємо $(\sin \beta = \cos \alpha; \cos \beta = -\sin \alpha; s = t)$:

$$kP = \frac{2 \cdot s^2 (b^2 \cdot c \pm a^2 \cdot d)}{a^2 b^2}$$
(12)

Якщо параметри твірної та напрямної парабол однакові, то еліптичний параболоїд (3) перетворюється у параболоїд обертання:

$$z = \frac{c \cdot (x^2 + y^2)}{a^2}$$
(13)

А рівняння (4) гіперболічного параболоїду прийматиме вигляд:

$$z = \frac{c \cdot (x^2 - y^2)}{a^2}$$
(14)

Рис. 3. Гіперболічний параболоїд на квадратній в плані сітці

Для поверхонь (13) та (14) формули (8 – 12) спрощуються.

4. Комірка сітки у плані приймає форму паралелограму:а) для поверхні (13):

$$kP = \frac{2c \cdot (s^2 + t^2)}{a^2}$$
(15)

б) для поверхні (14) отримуємо формулу:

$$kP = \frac{2c\left[s^2(\cos^2\alpha - \sin^2\alpha) + t^2(\cos^2\beta - \sin^2\beta)\right]}{a^2}$$
(16)

5. Комірка сітки має форму ромба:а) для поверхні (13):

$$kP = \frac{8c \cdot s^2}{a^2} \tag{17}$$

б) для поверхні (14) маємо формулу (18):

$$kP = \frac{4 \cdot c \cdot s^2 (\cos^2 \alpha - \sin^2 \alpha + \cos^2 \beta - \sin^2 \beta)}{a^2}$$
(18)

в) якщо діагоналі ромба паралельні координатним осям, формула (18) прийматиме вигляд:

$$kP = \frac{8c \cdot s^2 \left(\cos^2 \alpha - \sin^2 \alpha\right)}{a^2}$$
(19)

6. Комірка сітки має форму прямокутника:

$$kP = \frac{2c \cdot (s^2 \pm t^2)}{a^2}$$
(20)

7. Комірка сітки має форму квадрату:

а) для поверхні (13)

$$kP = \frac{4c \cdot s^2}{a^2} \tag{21}$$

б) для поверхні (14)

 $kP = 0 \tag{22}$

Висновки

У результаті аналізу розглянутих випадків організації дискретної сітки у плані, яку можна отримати афінним перетворенням сітки із квадратними клітинами, у процесі формування поверхонь параболоїдів (5) можна зробити наступні висновки:

1. На будь-якій із розглянутих сіток характер розподілу зовнішнього навантаження залишається рівномірним, оскільки у формулах (9) – (12) та (15) – (22) відсутні дискретні параметри *i* та *j*.

2. Величина зовнішнього навантаження *kP* у загальному випадку залежить як від параметрів форми сітки у плані, так і від параметрів її положення.

3. Незалежно від параметрів поверхонь (3) та (4) їх дискретні каркаси на квадратній у плані сітці довільної орієнтації формуються під дією навантаження *kP* на кожний вузол, величина якого прямо пропорційна площі комірки у плані.

4. Зовнішнє зусилля *kP* на вузли прямокутної сітки у плані (11) та (20) не залежить від орієнтації сітки відносно поверхні.

5. При формуванні дискретного каркасу поверхні гіперболічного параболоїду (14) на квадратній у плані сітці незалежно від орієнтації сітки та її кроку, зовнішнє навантаження на вузли дорівнює нулю.

Література

- 1. Ковалев, С.Н. Формирование дискретных моделей поверхностей пространственных архитектурных конструкций / С.Н.Ковалев// Дисс. ...докт. техн. наук: 05.01.01.- М.: МАИ, 1986. 320 с.
- 2. Ковальов, С.М. Властивості деяких параболоїдів *n*-го порядку / С.М. Ковальов, С.І.Ботвіновська, О.В.Мостовенко// Управління розвитком складних систем. 2015. № 22. С. 114 118.
- Ковальов, С.М. Прикладна геометрія та інженерна графіка. Спеціальні розділи. Випуск
 [Текст] / С.М. Ковальов, М.С.Гумен, С.І.Пустюльга, В.Є.Михайленко, І.Н.Бурчак// Луцьк: Редакційно видавничий відділ ЛДТУ, 2006. 256 с.
- 4. Золотова, А.В. Дискретна кускова інтерполяція точок при формуванні поверхонь в архітектурі / А.В.Золотова// дис…кандидата технічних наук: 05.01.01 / Золотова Алла Василівна. Київ: КНУБА, 2015. 142.
- 5. Самчук, П.В. Керування формою дискретно заданих поверхонь в задачах проектування оболонок / П.В. Самчук //дис...кандидата технічних наук: 05.01.01 / Самчук П.В. Київ: КІБІ, 1991. 154.

Аннотация

В статье проведен анализ влияния параметров дискретной сети в плане при формировании каркасов поверхностей параболоидов второго порядка статикогеометрическим методом на величину внешнего формообразующего усилия, приложенного к узлу сети при равномерном распределении внешней нагрузки.

<u>Ключевые слова:</u> дискретный каркас; статико-геометрический метод; уравновешенные сетки; внешняя нагрузка; поверхность параболоида.

Annotation

In this article, it analyzed of the influence of the parameters of a discrete network in terms of when forming framework of surfaces of paraboloids the second regularity. The surface of paraboloid is designed with a help static-geometric method. Examined the influence of parameters on the size of forces that are applied to the nodes of the network and influence on a size of the external shape-generating effort. An external load is evenly distributed. <u>Key words:</u> digital frame of surface; static-geometric method; balanced grid; external load; surface of paraboloid.