УДК 593.9

Гревцев О.К.

РІШЕННЯ ОСЕСИМЕТРИЧНОЇ ЗАДАЧІ ТЕОРІЇ ПРУЖНОСТІ ДЛЯ АКСІАЛЬНИХ ТІЛ ОБЕРТАННЯ ЗМІННОЇ ТОВЩИНИ

В статтях [1,2] був наведений метод розв'язання диференціальних рівнянь осесиметричної задачі теорії пружності для нерівномірно нагрітих обертових аксіальних тіл змінної товщини, зокрема дисків, симетричних відносно площин z = 0 і r = 0. При цьому було розглянуто одне з часних рішень системи диференціальних рівнянь у переміщеннях:

$$\Delta u_{1} - \frac{u}{r^{2}} + \frac{1}{1 - 2\nu} e_{,1} - \frac{2(1 + \nu)}{1 - 2\nu} \alpha \theta_{,1} + \frac{1}{G} \rho \omega^{2} r = 0; \qquad (1)$$
$$\Delta u_{3} + \frac{1}{1 - 2\nu} e_{,3} - \frac{2(1 + \nu)}{1 - 2\nu} \alpha \theta_{,3} = 0,$$

в яких індекс після коми означає часткову похідну за відповідною координатою *r* або *z*; u_1 і u_3 - відповідно компоненти радіального і осьового переміщень; Δu_1 – оператор Лапласа від переміщень u_i (*i*=1,3); α і *v* - коефіцієнти лінійного теплового розширення і Пуассона; $e = e_{11} + e_{22} + e_{33} = u_{1,1} + \frac{1}{r}u_1 + u_{3,3}$ - об'ємне розширення; $G = \frac{E}{2(1+v)}$ - модуль зсуву; *E* - модуль пружності; ρ - маса одиниці об'єму; ω - кутова швидкість; $\theta = \theta(r, z)$ - температурне поле.

Знайдені радіальні $u_1(r, z)$ і осьові $u_3(r, z)$ переміщення, які перетворювали систему (1) на тотожність, мали такий вигляд:

$$u_{1}(r, z) = u(r) - \frac{z^{2}}{2} \left[(1+v)\alpha\theta_{1,1} + \frac{v}{2G}\rho\omega^{2}r \right];$$

$$u_{3}(r, z) = -\frac{v}{1-v}\frac{z}{r}(ru)_{,1} - \frac{v}{1-v}\frac{z^{3}}{6}[(1+v)\alpha\Delta_{1}\theta_{1} + \frac{v}{G}\rho\omega^{2}] + \frac{1+v}{1-v}\alpha\int_{0}^{z}\theta(r, z)dz$$
(2)

У переміщеннях (2): u(r) -радіальне переміщення точок площини z = 0

© Гревцев О.К.

$$u(r) = -\frac{1-v}{2G}\rho\omega^2 \frac{r^3}{8} + (1+v)\alpha [B_1\frac{r^3}{16} + B_2(\frac{r}{2}\ell nr - \frac{r}{4})] + A_1\frac{r}{2} + A_2\frac{1}{r}, \quad (3)$$

 $\theta_1 = \theta_1(r)$ - температурне поле у радіальному напрямку.

$$\theta_1(r) = B_1 \frac{r^2}{4} + B_2 \ell n r + B_3.$$
(4)

У виразах (3) і (4): A₁, A₂, B₁, B₂, B₃ - довільні сталі інтегрування.

За знайденими переміщеннями (2) з урахуванням виразів (3) та (4) у відповідності до закону Гука було визначено напруження, причому осьові σ_{33} та дотичні σ_{13} дорівнювали нулю [1,2].

Рис. 1

У цій статті розглядається інше часткове рішення системи рівнянь (1), після розв'язання якого та після відомих перетворень, напруження σ_{13} та σ_{33} вже не дорівнюють нулю.

Розглянемо нерівномірно нагріте аксіальне тіпо обертання, якого чверть показана на рис. 1. Температурне поле $\theta(r, z)$ приймаємо вигляді y $\theta(r, z) = \theta_1(r) + \theta_2(r, z)$ [3].

Рішення рівнянь рівноваги у переміщеннях (1) шукаємо у вигляді раніше отриманого (2) з додаванням функції $\Psi(r, z)$, яку слід визначити, тобто:

$$u_{1}(r,z) = \frac{1+v}{1-v} \Psi_{,1}(r,z) + u(r) - \frac{z^{2}}{2} \left[(1+v) \alpha \theta_{1,1} + \frac{v}{2G} \rho \omega^{2} r \right];$$
(5)

$$u_{3}(r,z) = \frac{1+v}{1-v}\Psi_{,3}(r,z) - \frac{v}{1-v}z\frac{1}{r}(nr)_{,1} + \frac{v}{1-v}\frac{z^{3}}{6}\left[(1+v)\alpha\Delta_{1}\theta_{1} + \frac{v}{G}\rho\omega^{2}\right] + \frac{1+v}{1-v}\alpha_{0}^{5}\theta_{1}dz$$

Знайдені функції $u_1(r, z)$ є рішенням рівнянь (5).

Далі знаходимо значення об'ємного розширення $e = e_{11} + e_{22} + e_{33} = u_{1.1} + \frac{1}{r}u_1 + u_{3.3}$ і після зведення подібних членів, маємо:

$$e = \frac{1 - 2v}{1 - v} \left\{ \frac{1}{r} (ur)_{,1} - \frac{z^2}{2} \left[(1 + v) \alpha \Delta_1 \theta_1 + \frac{v}{2G} \rho \omega^2 \right] \right\} + \frac{1 + v}{1 - v} (\Delta \Psi + \alpha \theta_1).$$
(6)

Підставляючи переміщення (5) у перше рівняння системи (1), з врахуванням (6) маємо:

$$\left(\Delta \Psi - \alpha \theta_2\right)_{,1} = 0\,,\tag{7}$$

де $\Psi = \Psi(r, z)$ і $\theta_2 = \theta_2(r, z)$.

Аналогічно для другого рівня системи (1), маємо

$$\left(\Delta \Psi - \alpha \theta_2\right)_{,3} = 0\,,\tag{8}$$

де $\Psi = \Psi(r, z)$ і $\theta_2 = \theta_2(r, z)$.

Звідси виходить, що

$$\Delta \Psi - \alpha \theta_2 = C , \qquad (9)$$

де C - const.

3 (9) одержимо:

$$\theta_2(r,z) = \frac{1}{\alpha} \Delta \Psi = \frac{1}{\alpha} \left(\Psi_{,11} + \frac{1}{r} \Psi_{,1} + \Psi_{,33} \right).$$
(10)

Для температурного розподілу $\theta = \theta(r, z)$ з урахуванням (4) та (10), маємо:

$$\theta(r,z) = B_1 \frac{r^2}{4} + B_2 \ell nr + B_3 + \frac{1}{\alpha} \left(\Psi_{,11} + \frac{1}{r} \Psi_{,1} + \Psi_{,33} \right).$$
(11)

Диференціальні рівняння рівноваги в циліндричних координатах для напружень мають вигляд [4]

$$\sigma_{11.1} + \sigma_{13.1} + \frac{\sigma_{11} - \sigma_{22}}{r} + \rho \omega^2 r = 0;$$

$$\sigma_{13.1} + \sigma_{33.3} + \frac{1}{r} \sigma_{13} = 0,$$
(12)

де $\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{13}$ - відповідно компоненти напружень радіальної дії окружного осьового і дотичного напружень.

Закон Гука записуємо у вигляді [5]:

$$\sigma_{11} = 2G \left[e_{11} + \frac{v}{1 - 2v} e - \frac{1 + v}{1 - 2v} \alpha \theta \right];$$

$$\sigma_{22} = 2G \left[e_{22} + \frac{v}{1 - 2v} e - \frac{1 + v}{1 - 2v} \alpha \theta \right];$$

$$\sigma_{33} = 2G \left[e_{33} + \frac{v}{1 - 2v} e - \frac{1 + v}{1 - 2v} \alpha \theta \right];$$

$$\sigma_{13} = 2G e_{13}.$$
(13)

Підставляючи переміщення (5) у четверте рівняння системи знаходимо дотичне напруження σ_{13} :

$$\sigma_{13} = \frac{E}{1 - v} \Psi_{,13} \,. \tag{14}$$

За аналогією з третім рівнянням системи (13) для σ_{33} маємо:

$$\sigma_{33} = -\frac{E}{1-\nu} \frac{1}{r} (r \Psi_{,1})_{,1}.$$
 (15)

Граничні умови на поверхні аксіального тіла обертаняя, що розглядається, будуть такими [6]:

$$P_{r} = \sigma_{11} \cos(r, n) + \sigma_{13} \cos(z, n) ;$$
(16)
$$P_{z} = \sigma_{13} \cos(r, n) + \sigma_{33} \cos(z, n) ,$$

де P_r і P_z -проекції інтенсивності поверхневих навантажень на напрямки r і z; n-нормаль до поверхні тіла обертання; (r,n) і (z,n)кути між нормаллю і напрямками координатних осей.

Криволінійна бічна поверхня диска змінної товщини вільна від навантажень ($P_r = P_z = 0$) (рис. 1). Тоді із другого рівняння (16) маємо:

$$\left[\sigma_{13}\cos(r,n) + \sigma_{33}\cos(z,n)\right]_{f} = 0.$$
 (17)

Якщо $f(r, z) \equiv 0$ - неявне рівняння лінії профілю граничної поверхні тіла обертання, то у явній формі маємо:

$$r^2 = e^2(z)$$
 Ta $z^2 = \frac{h^2(r)}{4}$.

Довжина вектора нормалі до лінії профілю диска дорівнює:

$$\left| \overline{n} \right| = \sqrt{f_{,1}^{\,2} + f_{,3}^{\,2}} ,$$

де $f_{,1} = \left| \overline{n} \right| \cos(r, n)$ і $f_{,3} = \left| \overline{n} \right| \cos(z, n)$. Звідси:

$$\cos(r,n) = \frac{f_{,1}}{\left|\overline{n}\right|}; \cos(z,n) = \frac{f_{,3}}{\left|\overline{n}\right|}.$$

Тоді умова (17) набирає вигляду:

$$\left[\sigma_{13}\frac{f_{,1}}{\left|\overline{n}\right|} + \sigma_{33}\frac{f_{,3}}{\left|\overline{n}\right|}\right]_{f} = 0.$$

Але
$$f(r,z) \equiv z^2 - \frac{h^2(r)}{4}$$
. Тоді $f_{,1} = \left(-\frac{h^2}{4}\right)_{,1}$ і $f_{,3} = 2z$. Звідси:

$$\left[\sigma_{13}\left(-\frac{h^2}{4}\right)_{,1} + \sigma_{33}2z\right]_{z^2 = \frac{h^2(r)}{4}} = 0.$$
(18)

Далі задаємо напруження σ_{13} та σ_{33} через нову функцію таким чином, щоб задовольнити граничні умови (18). Наприклад, задамо:

$$\sigma_{13} = \frac{E}{1-\nu} \Psi_{,13} = \frac{E}{1-\nu} z \varphi_{,1}.$$
 (19)

Тоді

$$\Psi_{,13} = z\varphi_{,1} \qquad \left[\Psi = \Psi(r,z); \varphi = \varphi(r)\right]. \tag{20}$$

Значення σ_{13} повинно задовольняти не тільки рівнянню (18), а й граничним умовам: $\sigma_{13} = 0$, при $r = a_1$ і $\sigma_{13} = 0$, при $r = a_2$ (див. рис. 1), тобто:

$$\varphi_{,1}(a_1) = 0; \ \varphi_{,1}(a_2) = 0.$$
 (21)

Крім того, $u_3 = 0$ при z = 0, дає:

$$\Psi_{,3}(r,z) = 0.$$
 (22)

Інтегруючи (20) маємо:

$$\Psi(r,z) = \int \left(\frac{z^2}{2} - \frac{h^2}{4}\right) \varphi_{,1} dr + f(z) .$$
 (23)

Далі знаходимо $\Psi_{,3}(r,z)$:

$$\Psi_{,3}(r,z) = z\varphi(r) + f_{,3}(z)$$

3 рівняння (22) при z=0 маємо:

$$f_{,3}(z) = 0. (24)$$

Знаходимо σ_{33} із (14), враховуючи (23):

$$\sigma_{33} = -\frac{E}{1-\nu} \frac{1}{r} \left(r \Psi_{,1} \right)_{,1} = -\frac{E}{1-\nu} \left[\left(-\frac{h^2}{8} \right)_{,1} \varphi_{,1} + \left(\frac{z^2}{2} - \frac{h^2}{8} \right) \frac{1}{r} (r \varphi_{,1})_{,1} \right].$$
(25)

Підставляючи отримані функції σ_{13} і σ_{33} з (19) та (25) у граничні умови (18), одержуємо:

$$\varphi_{,1}(r)\left(-\frac{h^2}{4}\right)_{,1} - \varphi_{,1}(r)\left(-\frac{h^2}{4}\right)_{,1} \equiv 0$$

Таким чином, граничні умови (18) задовільнено. Напруження σ_{11} знаходимо з першого рівняння системи (13), враховуючи вирази (6), а також (3) і (11), в яких задаємо $B_2 = 0$. Після наведення подібних членів з врахуванням виразу (23), знаходимо:

$$\sigma_{11} = \frac{E}{1-v} \left\{ -\left(\frac{z^2}{2} - \frac{h^2}{8}\right) \frac{1}{r} \varphi_{,1}(r) - \varphi(r) - f_{,33}(z) - \left[(1-v)\alpha \frac{B_1}{16} + \frac{1-v}{2G} \frac{3+v}{1+v} \frac{\rho\omega^2}{8}\right] \times \right\}$$

$$\times r^2 - \alpha B_3 + A_1 \frac{1}{2} - \frac{1-v}{1+v} \frac{1}{r^2} A_2 - \frac{z^2}{2} \left(\frac{1+v}{2} \alpha B_1 + \frac{v}{2G} \rho\omega^2\right)$$
(26)

Граничні умови на циліндричних поверхнях даного тіла обертання (див. рис. 1) будуть такими:

$$\sigma_{11} = P_2$$
 при $r = a_2; \sigma_{11} = -P_1$ при $r = a_1; \sigma_{13} = 0$ при $r = a_2$ і
 $\sigma_{13} = 0$ при $r = a_1$. (27)

Задовольняючи граничним умовам (27) для σ_{11} і враховуючи вираз (21) знаходимо $A_1; A_2$ і $f_{,33}$. Підставляючи знайдені функції у (26), одержимо:

$$\sigma_{11} = \frac{P_1 a_1^2 + P_2 a_2^2}{a_2^2 - a_1^2} - \frac{(P_1 + P_2) a_1^2 a_2^2}{r^2 (a_2^2 - a_1^2)} + \frac{E}{1 - v} \{ -(\frac{z^2}{2} - \frac{h^2}{8}) \frac{1}{r} \varphi_{,1}(r) - \varphi(r) + \frac{a_2^2 \varphi(a_2) - a_1^2 \varphi(a_1)}{a_2^2 - a_1^2} - \frac{[\varphi(a_2) - \varphi(a_1)] a_1^2 a_2^2}{r^2 (a_2^2 - a_1^2)} + (a_2^2 + a_1 - \frac{a_2^2 a_1^2}{r^2} - r^2) \times [(1 - v) \alpha \frac{B_1}{16} + \frac{1 - v}{2G} \frac{\rho \omega^2}{8} \frac{3 + v}{1 + v}] \}.$$

$$(28)$$

За аналогією з вищесказаним отримуємо для окружної напруги σ_{22} :

$$\sigma_{22} = \frac{P_{1}a_{1}^{2} + P_{2}a_{2}^{2}}{a_{2}^{2} - a_{1}^{2}} + \frac{(P_{1} + P_{2})a_{1}^{2}a_{2}^{2}}{r^{2}(a_{2}^{2} - a_{1}^{2})} + \frac{E}{1 - v} \left\{ \left(\frac{h^{2}}{8} \right) \varphi_{,1}(r) - \left(\frac{z^{2}}{2} - \frac{h^{2}}{8} \right) \varphi_{,11}(r) - \varphi(r) + \frac{a_{2}^{2}\varphi(a_{2}) - a_{1}^{2}\varphi(a_{2})}{a_{2}^{2} - a_{1}^{2}} + \frac{[\varphi(a_{2}) - \varphi(a_{1})]a_{1}^{2}a_{2}^{2}}{r^{2}(a_{2}^{2} - a_{1}^{2})} - \left[(1 - v)\alpha \frac{3B_{1}}{16} + \frac{1 - v}{2G} \frac{\rho\omega^{2}}{8} \frac{1 + 3v}{1 + v} \right] r^{2} + \left\{ a_{2}^{2} + a_{1}^{2} + \frac{a_{2}^{2}a_{1}^{2}}{r^{2}} \right] \left[(1 - v)\alpha \frac{B_{1}}{16} + \frac{1 - v}{2G} \frac{\rho\omega^{2}}{8} \frac{3 + v}{1 + v} \right] \right\}.$$
(29)

Далі розглянемо перше рівняння граничних умов (16). У випадку, коли $z^2 = \frac{h^2}{4}$, маємо:

$$\left[\sigma_{11} \frac{f_{,1}}{\left|\overline{n}\right|} + \sigma_{13} \frac{f_{,3}}{\left|\overline{n}\right|}\right]_{f} = 0.$$

Оскільки $f(r, z) \equiv z^2 - \frac{h^2(r)}{4} = 0$ і $f_{,1} = \left(-\frac{h^2}{4}\right)_1$; $f_{13} = 2z$, тоді:

$$\left[\sigma_{11}\left(-\frac{h^2}{4}\right)_{,1} + \sigma_{13} 2z\right]_{z^2 = \frac{h^2(r)}{4}} = 0.$$
(30)

Підставляючи функції σ_{11} та σ_{13} у (30) з (28) і (19), отримаємо:

$$\left\{ \left[Q(r) - \varphi(r) \left(-\frac{h^2}{4} \right)_{,1} + 2z^2 \varphi_{,1}(r) \right\}_{z^2 = \frac{h^2(r)}{4}} = 0, \quad (31)$$

де

$$Q(r) = \frac{1-v}{E} \left[\frac{P_2 a_2^2 \left(r^2 - a_1^2\right) - P_1 a_1^2 \left(a_2^2 - r^2\right)}{r^2 \left(a_2^2 - a_1^2\right)}\right] + \frac{a_2^2 \left(r^2 - a_1^2\right) \varphi(a_2) + a_1^2 \left(a_2^2 - r^2\right) \varphi(a_1)}{r^2 \left(a_2^2 - a_1^2\right)} + \left(a_2^2 + a_1^2 - \frac{a_1^2 a_2^2}{r^2} - r^2\right) \left[\left(1 - v\right) \alpha \frac{B_1}{16} + \frac{1 - v}{2G} \frac{\rho \omega^2}{8} \frac{3 + v}{1 + v}\right].$$
(32)

3 виразу (31) знаходимо:

$$\varphi_{,1}(r) = -\frac{h_{,1}(r)}{n(r)} [\varphi(r) - Q(r)],$$
 при $z = \frac{h}{2}$. (33)

Згідно з умовами (21), маємо:

$$\varphi_{,1}(a_1) = -\frac{\left(\frac{h}{2}\right)_{,1}}{\frac{h}{2}}\Big|_{r^2 = a_1^2} [\varphi(a_1) - Q(a_1)].$$

Але $Q(a_1)$ з (32) дорівнює:

$$Q(a_1) = -P_1 \frac{1-v}{E} + \varphi(a_1).$$

Тоді:

$$\varphi_{,1}(a_1) = -\frac{\left(\frac{h}{2}\right)_{,1}}{\frac{h}{2}}\Big|_{r^2 = a_1^2} P_1 \frac{1-v}{E}.$$

Звідси:

$$z_r^1\Big|_{r^2=a_1^2} = \left(\frac{h}{2}\right)_1\Big|_{r^2=a_1^2} = 0 \text{ i } \varphi_1(a_1) = 0.$$

Аналогічно $z_r^1 \Big|_{r^2 = a_2^2} = \left(\frac{h}{2}\right)_1 \Big|_{r^2 = a_2^2} = 0$ і $\varphi_{,1}(a_2) = 0$.

i.

Рішення рівняння (33) дає для функції $\varphi(r)$:

$$\varphi_{(r)} = \frac{1}{h(r)} \left[\int_{a_1}^{r} Q(r) h_{,1}(r) dr + C \right].$$
(34)

При $r = a_1$, $\varphi_{,1}(a_1) = 0$ i $Q(r) = -P_1 \frac{1-v}{E} + \varphi(a_1)$. Тоді із (33)

враховуючи (34) маємо:

$$O = -\frac{h_{,1}(a_1)}{h(a_1)} \left\{ \frac{1}{h(a_1)} C + P_1 \frac{1-\nu}{E} - \varphi(a_1) \right\}.$$

Але із (34):

$$\varphi(a_1) = \frac{1}{h(a_1)}C \; .$$

Тоді:

$$-\frac{h_{,1}(a_1)}{h(a_1)}P_1\frac{1-\nu}{E}=0,$$

але $P_1 \neq 0$ і $\frac{h_1(a_1)}{2} = 0$.

При $r = a_2, \varphi_{,1}(a_2) = 0$ і $Q(r) = P_2 \frac{1-v}{E} + \varphi(a_2)$. Тоді із (33), враховуючи (34), маємо:

$$O = -\frac{h_{,1}(a_2)}{h(a_2)} \left\{ \frac{1}{h(a_2)} \left[\int_{a_1}^{a_2} Q(r)h_{,1}(r)dr + C \right] - Q(a_2) \right\}.$$

Але:

$$\varphi(a_2) = \frac{1}{h(a_2)} \left[\int_{a_1}^{a_2} Q(r) h_{,1}(r) dr + C \right].$$

Тоді:

$$\frac{h_{,1}(a_2)}{h(a_2)}P_2\frac{1-v}{E}=0,$$

але $P_2 \neq 0$ і $\frac{h_1(a_2)}{2} = 0$.

Як бачимо, граничні умови (30) виконано. Для знаходження функції $\varphi(r)$ обов'язково треба знати вид ліній профілю поверхні нерівномірно нагрітого обертового аксіального тіла. Наприклад, для нерівномірно нагрітого обертового диска змінної товщини з центральним отвором, зовнішня і внутрішня циліндричні поверхні якого завантажені рівномірно розподіленим навантаженням P_2 і P_1 , а бокова поверхня обмежена прямою $z = \frac{b}{a} (a - r)$. Чверть даного тіла обертання (через осьову симетрію) показана на рис.1.Рівняння лінії профілю бічної поверхні диска є таким:

$$f(r,z) \equiv z^{2} - \frac{h^{2}}{4} = \left(z - \frac{h}{2}\right)\left(z + \frac{h}{2}\right) =$$

$$= \left[z - \frac{b}{a}(a - r)\right]\left[z + \frac{b}{a}(a - r)\right] = z^{2} - \frac{b^{2}}{a^{2}}(a - r)^{2} \equiv 0.$$
(35)

Звідси:

$$\frac{h^2}{4} = \frac{b^2}{a^2} (a-r)^2; \frac{h}{2} = \frac{b}{a} (a-r)_{,1} = -\frac{b}{a}; \frac{h_{,1}}{h} = -\frac{1}{a-r}.$$
 (36)

Знаходимо функції $\varphi(r); \varphi(a_1); \varphi(a_2)Q(r)$ та їх похідні, тобто $\varphi_{,1}(r); \varphi_{,11}(r); Q_{,1}(r)$ за вищенаведеними залежностями і з врахуванням (35). Підставляючи знайдені функції у формули (19); (25);(28) і (29) отримаємо напруження $\sigma_{13}; \sigma_{33}; \sigma_{11}; \sigma_{22}$

$$\sigma_{13} = -\frac{z}{(a-r)^2} \left\{ \frac{a-a_1}{a_2^2 - a_1^2} \left(P_1 a_1^2 + P_2 a_2^2 \right) - \frac{a_1 a_2^2 \left(r^2 + aa_1 - 2ra_1 \right)}{r^2 \left(a_2^2 - a_1^2 \right)} \left(P_1 + P_2 \right) - \frac{a_2^2 \left(ar^2 - 2r^2 a_1 + 2ra_1^2 - aa_1^2 \right)}{r^2 (aa_2 + aa_1 - 2a_1 a_2)} \times \left[\frac{P_1 a_1^2 + P_2 a_2^2}{a_2^2 - a_1^2} - \frac{\left(P_1 + P_2 \right) a_1 a_2}{a_2^2 - a_1^2} + \left(a_2^2 + a_1^2 - a_1 a_2 - \frac{a_2^3 - a_1^3}{3a_2 - 3a_1} \right) \times \left(\frac{\alpha E B_1}{16} + \frac{3 + \nu}{8} \rho \omega^2 \right) \right] + \left[\left(a - a_1 \right) \left(a_2^2 + a_1^2 \right) - \left(a - r \right) r^2 - \frac{a_1 a_2^2 \left(r^2 - 2ra_1 + aa_1 \right)}{r^2} - \frac{r^3 - a_1^3}{3} \right] \times \left(\frac{\alpha E B_1}{16} + \frac{3 + \nu}{8} \rho \omega^2 \right) \right] \right\}$$
(37)

$$\begin{split} \sigma_{33} &= -[\frac{b^2}{2a^2r} - \frac{z(a+r)}{2r(a-r)^3}] \{\frac{a-a_1}{a_2^2 - a_1^2} (P_1a_1^2 + P_2a_2^2) - \frac{a_1a_2^2(r^2 - 2ra_1 + aa_1)}{r^2(a_2^2 - a_1^2)} (P_1 + P_2) + \\ &+ \frac{a_2^2(2r^2a_1 - 2ra_1^2 - ar^2 + aa_1)}{r^2(a_2 + aa_1 - 2a_1a)} [P_1a_1^2 + P_2a_2^2 - (P_1 + P_2)a_1a_2} + (a_2^2 + a_1^2 - a_1a_2 - \frac{a_2^2 - a_1^2}{3a_23a_1}) \times \\ &\times (\frac{dEB_1}{16} + \frac{3+v}{8}\rho\omega^2)] + [(a-a_1)(a_2^2 + a_1^2) - (a-r)r^2 - \frac{a_1a_2^2(r^2 - 2ra_1 + aa_1)}{r^2} - \frac{r^3 - a_1^2}{3} \dots (38) \\ &\times (\frac{dEB_1}{16} + \frac{3+v}{8}\rho\omega^2)] + [(a-a_1)(a_2^2 + a_1^2) - (a-r)r^2 - \frac{a_1a_2^2(r^2 - 2ra_1 + aa_1)}{r^2} - \frac{r^3 - a_1^2}{3} \dots (38) \\ &\times (\frac{dEB_1}{16} + \frac{3+v}{8}\rho\omega^2)] - [\frac{b^2}{a^2}(a-r) - \frac{z^2}{a-r}] \{\frac{a_1^2a_2^2}{r^3(a_2^2 - a_1^2)} (P_1 + P_2) - \frac{a_1^2a_2^2}{r^3(a_2 - a_1^2)} \times \\ &\times [\frac{Pa_1^2 + P_2a_2^2}{a_2^2 - a_1^2} - \frac{(P_1 + P_2)a_1a_2}{a_2^2 - a_1^2} + (a_2^2 + a_1^2 - a_1a_2 - \frac{a_2^3 - a_1^3}{3a_2 - 3a_1}) \times (\frac{dEB_1}{16} + \frac{3+v}{8}\rho\omega^2)] - \\ &- (r - \frac{a_1^2a_2^2}{r^2}) \times (\frac{dEB_1}{16} + \frac{3+v}{8}\rho\omega^2) \} \\ &\sigma_{11} = \frac{P_2a_2^2(r^2 - a_1) - P_aa_1^2(a_2^2 - r^2)}{r^2(a_2^2 - a_1^2)} + (a_2^2 + a_1^2 - \frac{a_2^2a_1^2}{r^2} - r^2)(\frac{dEB_1}{16} + \frac{3+v}{8}\rho\omega^2) - \\ &- [\frac{b^2}{2a^2r} - \frac{z^2}{2r(a-r)^2}] \times (\frac{Pa_2^2 + P_1a_1^2}{a_2^2 - a_1^2} (a-a_1) - \frac{(P_1 + P_2)a_1a_2}{r^2 - a_1^2} \cdot \frac{r^2 - 2ra_1 + aa_1}{r^2} - \\ &- \frac{a_2^2(r^2 - a_1) + 2ra_1^2 - 2r^2a_1}{r^2(a_2 - a_1^2)} \times [\frac{P_2a_2^2 + P_1a_1^2}{a_2^2 - a_1^2} - \frac{(P_1 + P_2)a_1a_2}{r^2 - a_1^2} - \frac{r^2 - a_1a_2 - a_$$

$$\begin{split} \sigma_{22} &= \frac{P_2 a_2^2 \left(r^2 + a_1^2\right) + P_1 a_1^2 \left(a_2^2 + r^2\right)}{r^2 \left(a_2^2 - a_1^2\right)} + (a_2^2 + a_1^2 + \frac{a_2^2 a_1^2}{r^2} - 3r^2) \frac{\partial ER}{16} + (a_2^2 + a_1^2 + \frac{a_1^2 a_2^2}{r^2} - \frac{1+3v}{r^2} - \frac{1+3v}{r^2} r^2) \times \frac{3+v}{8} \rho a^2 + \frac{z^2}{(a-r)^3} \left\{ \frac{P_2 a_2^2 + P_1 a_1^2}{a_2^2 - a_1^2} \left(a-a_1\right) - \frac{(P_1 + P_2)a_1 a_2}{a_2^2 - a_1^2} \cdot \frac{r^2 - 2ra_1 + aa_1}{r^2} - \frac{-\frac{a_2^2 \left(ar^2 - aa_1^2 + 2ra_1^2 - 2r^2 a_1\right)}{r^2 \left(aa_2 + aa_1 - 2a_1 a_2\right)} \times \left[\frac{P_2 a_2^2 + P_1 a_1^2}{a_2^2 - a_1^2} - \frac{(P_1 + P_2)a_1 a_2}{a_2^2 - a_1^2} + (a_2^2 + a_1^2 - a_1 a_2 - \frac{a_2^3 - a_1^3}{3a_2 - 3a_1}) \times \left(\frac{\partial ER}{16} + \frac{3+v}{8} \rho a^2 \right) \right] + \left[\left(a-a_1 \right) \left(a_2^2 + a_1^2 \right) - \left(a-r \right)r^2 - \frac{r^3 - a_1^3}{3} - \frac{a_1 a_2^2 \left(r^2 - 2ra_1 + aa_1\right)}{r^2} \right] \right] \right] \end{split}$$
(40)
$$\left(\frac{\partial ER}{16} + \frac{3+v}{8} \rho a^2 \right) - \left[\frac{b^2}{a^2} \left(a-r \right) - \frac{z^2}{a-r} \right] \left\{ \frac{(P_1 + P_2)a_1 a_2}{r^3 \left(a^2 - a_1^2\right)} - \frac{a_1^2 a_2^2}{r^3 \left(a^2 - a_1^2 - 2a_1 + aa_1\right)} \right] \right] \left\{ \frac{P_2 a_2 + P_1 a_1}{r^3 \left(a^2 - a_1^2\right)} - \frac{a_1^2 a_2^2}{r^2 \left(a^2 - 2ra_1 + aa_1\right)} \right] \right\} \\ - \left[\frac{(P_1 + P_2)a_1 a_2}{r^2 \left(a-r \right)} + \left(a^2 - a_1^2 - \frac{a_1^2 a_2^2}{a-r^2} \right) + \left(a^2 - a_1^2 - \frac{a_1^2 a_2^2}{r^2 \left(a^2 - a_1^2\right)} - \frac{e_1^2 a_2 + P_1 a_1}{r^3 \left(a^2 - a_1^2\right)} \right] \right\} \\ - \left[\frac{-\left(P_1 + P_2)a_1 a_2}{a_2^2 - a_1^2} + \left(a^2 - a_1 a_2 - \frac{a_2^3 - a_1^3}{3a_2 - 3a_1}\right) + \left(a^2 + a_1^2 - \frac{a_1 a_2^2}{r^2} - \frac{r^3 - a_1^3}{r^2 \left(a-r \right)} \right] \right] \left(\frac{\partial ER}{16} + \frac{3+v}{8} \rho a^2 \right) \right] \\ - \left[\frac{-a_1^2 \left(a^2 + a_1^2 - a_1^2 - \frac{e_1^2 - a_1^2}{r^2 \left(a^2 - a_1^2\right)} + \left(a^2 + a_1^2 - \frac{a_1 a_2^2}{r^2} - \frac{r^3 - a_1^3}{r^2 \left(a-r \right)} \right) \right] \left(\frac{\partial ER}{a_2^2 - a_1^2} + \left(a^2 + a_1^2 - \frac{a_1 a_2^2}{r^2 - a_1^2} - \frac{r^3 - a_1^3}{r^2 - a_1^2} \right) \right) \left(\frac{\partial ER}{r^2 - a_1^2} + \frac{a_1^2 - a_1^2 - \frac{a_1^2 a_2^2}{r^2 - a_1^2}} \right) \\ - \left[\frac{e_1^2 \left(ar^2 + aa_1 - 2r^2 a_1\right)}{r^2 \left(a-r \right) \left(a_2^2 - a_1^2\right)} + \left(a_2^2 + a_1^2 - \frac{a_1^2 a_2^2}{r^2 - a_1^2} - \frac{a_1^2 a_2^2 - a_1^2}{r^2 - a_1^2} \right) \right) \left(\frac{e_1^2 - e_1^2 + e_1^2 - \frac{e_1^2 a_2^2}{r^2 - a_1^2}}{r^2 - a_1^2 - a_1^2 - \frac{e$$

Рис. 2

Знайдені $\sigma_{13}, \sigma_{33}, \sigma_{11}$ та $\sigma_{22} \in$ точним розв'язанням системи рівнянь рівноваги (12), тому що після підстановки перетворюють останні на тотожності.

Для прикладу визначення напруженого стану за запропонованим методом розглянемо рівномірно нагрітий обертовий диск змінної товщини з центральним отвором, чверть якого показана на рис. 2. Визначення напружень в даному диску методом скінчених елементів наведена у роботі [7]. Лиск. шо розглядається, вироблений із сталі марки 45Х14Н14В2М, постійною обертається 3 кутовою швидкістю $\omega = 753,6$ рад/с і зазнає дії рівномірно розподіленого по зовнішній поверхні обода навантаження Р₂= 173 МПа. Щільність матеріалу диска

 $\rho = 0.8 \cdot 10^4 \, \text{кг/m}^3$, коефіцієнт Пуассона $\nu = 0.36$. Результати розрахунків для напружень $\sigma_{11}, \sigma_{22}, \sigma_{13}, \sigma_{33}$ наведені у таблицях 1-4. На рис. 3 пунктирними лініями показані епюри напружень σ_{11}, σ_{22} визначені методом скінчених елементів, а суцільними – епюри σ_{11}, σ_{22} визначені запропонованим методом. Треба зазначити, що радіальні та окружні напруження визначалися на осі or, тобто при z=0. У таблиці 5 наведено зпівставлення результатів розрахунку для σ_{11}, σ_{22} , отриманих двома методами. Як бачимо із таблиці 5, розбіжність між σ_{11} у середньому становить 18%, а для σ_{22} - 22%. Крім того, значення радіальних напружень, які отримані запропонованим методом, менші за значення σ_{11} , які отримані методом скінчених елементів. Із таблиць 3 і 4 бачимо, що величини дотичних σ_{13} та осьових σ_{33} напружень досягають максимальних значень у зоні з'єднання полотна диска зі ступіцею і ободом. Ці спостереження збігаються з дослідженнями, викладеними у роботі [7]. Крім того, величина осьових напружень дуже мала (див. табл. 4).

Ί	аблиця	1

Z _M	0,0000	0,0080	0,0092	0,0141	0,0150	0,0190	0,0247	0,0270	0,0400
0,3000	173	173	173	173					
0,2970	190	189	189	189					
0,2640	318	318	319						
0,1500	208	208	208	209	209	209			
0,1070	152	153	153	154	155	156	159		
0,0802	64	65	65	67	67	69	73	75	89
0,0592	32	32	32	33	33	34	36	37	42
0,0500	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0

r _M	0,0000	0,0080	0,0092	0,0141	0,0150	0,0190	0,0247	0,0270	0,0400
0,3000	238	238	238	238	238				
0,2970	250	256	259	270					
0,2640	385	387	388						
0,1500	273	274	274	274	274	275			
0,1070	233	235	236	240	241	246	255		
0,0802	159	161	162	165	167	171	179	182	211
0,0592	201	203	204	208	211	215	225	230	265
0,0500	235	238	239	244	247	253	264	270	310

Таблиця 2

Таблиця 3

Z _M	0,0000	0,0080	0,0092	0,0141	0,0150	0,0190	0,0247	0,0247	0,0400
r _M									
0,3000	0	0	0	0	0				
0,2970	0	33	38	59					
0,2640	0	-25	-28						
0,1500	0	-8	-9	-13	-14	-18			
0,1070	0	-21	-23	-36	-38	-49	-63		
0,0802	0	0	0	0	0	0	0	0	0
0,0592	0	0	0	0	0	0	0	0	0
0,0500	0	0	0	0	0	0	0	0	0

Таблиця 4

Z _M	0,0000	0,0080	0,0092	0,0141	0,0150	0,0190	0,0247	0,0247	0,0400
r _M									
0,3000	0	0	0	0	0				
0,2970	-1	5	7	18					
0,2640	0	2	3						
0,1500	-1	-1	0	0	1	2			
0,1070	-8	-5	-4	1	3	9	21		
0,0802	0	0	0	0	0	0	0	0	0
0,0592	0	0	0	0	0	0	0	0	0
0,0500	0	0	0	0	0	0	0	0	0

<i>R</i> , м	<i>σ</i> _{11, МПа} при <i>z</i> =0	<i>σ</i> _{11, МПа} (MCE)	Розходження	<i>σ</i> _{22, МПа} при <i>z</i> =0	σ _{22, МПа} (MCE)	Розходження $\sigma_{22,}$ %
0,3000	173	173	0	238	195	18
0,2970	190	182	4	250	211	16
0,2640	318	342	7	385	304	21
0,1500	208	255	18	273	265	3
0,1070	152	197	23	233	263	11
0,0802	64	133	52	159	263	41
0,0592	32	55	42	201	312	36
0,0500	0	0	0	235	360	35

Таблиця	5
---------	---

Отже запропонований в статті метод розв'язання осесиметричної задачі теорії пружності для нерівномірно нагрітих аксіальних тіл обертання змінної товщини, на думку автора, може бути застосований у турбобудівництві, тому що дозволяє точно визначити напруження в будьякій точці тіла диска. При цьому, на геометію бічної поверхні диску обмежень не накладається, що допоможе проводити оптимізацію конструктивних розмірів тіла обертання залежно від інженерних вимог.

- Гревцев А. К., Рябов А. Ф. Решение задачи теории упругости для вращающихся дисков переменной толщины. – Киев, 1989.-19с. Деп.в УкрНИИНТИ 24.04.89, № 11566-Ук89.
- Гревцев О. К. Про один метод розв'язання осесиметричної задачі теорії пружності для нерівномірно нагрітого обертового диска змінної товщини // Опір матеріалів і теорія споруд. 1998.- Вип.64-с.76-86.
- Кац А. М. Теория упругости. М.: Гос. издат. технико теоретической литературы, 1956.-207 с.
- 4. Тимошенко С.П., Гудьер Дж. Теория упругости.- М., 1979-560 с.
- 5. *Мелан Э. Паркус Г.* Термоупругие напряжения вызываемые стационарными температурными полями. М.: Физматиз, 1958.-167 с.
- 6. Тимошенко С. П. Курс теории упругости.- К., 1972.-501 с.
- Подгорный А. Н. др. Ползучесть элементов машиностроительных конструкций.-Киев: Наукова думка, 1984-264 с.

Матеріал надійшов до редакції 27.07.04.