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Nonlinear applied problems dynamics of pipelines with flowing liquid were considered on the
basis of complex approach, which includes variational statement of the problem with automatic
derivation of dynamical boundary conditions, mixed Euler-Lagrange description of fluid-structure
interaction, method of modal decomposition, qualitative and numerical research of system behav-
ior. We investigate system behavior of pipeline on moving foundation, for liquid flow with veloci-
ties, which are in a vicinity of critical velocities of liquid flow or exceed them, Different variants of
foundation motion includes vibrations, rotation. Investigation showed the presence of alternative
equilibrium state, near which pipeline oscillations occur for certain ranges of velocities of liquid
flow.
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Introduction. Pipelines, conveying liquid, are significant components of
numerous structures and engineering systems. Majority of investigations of
these problems are done for dynamics of pipelines on immovable foundation or
for liquid flows with velocities, which do not attain their critical values [1-6].
However, a lot of applied problems are connected with necessity of considering
movable foundation and great values of velocities of liquid flow. Namely these
problems originate in problems of fire suppression in high-rise buildings, with
operation of energy installations, for abnormal modes of pipelines behavior in
the case of pipeline breaking, for different problems of drilling. There are dif-
ferent approaches for pipeline dynamics modeling, however they are mostly
focused on problems of high-pressure pipelines, which transport gas. In this
case type of problem differs considerably because relative mass of gas can be
neglected, therefor its motion does not affect pipeline dynamics. In the case of
similar order of linear densities of liquid and pipeline material near effects of
combined motion in fluid-structure interaction systems are manifested.

1. Problem statement. We consider pipeline as elastic beam, made of ho-
mogeneous material with linear density A . It is assumed that pipelines length
exceeds its transversal dimension at least ten times. In this case one-
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dimensional model of pipeline as beam is acceptable. Further we consider pipe-
line of cylindrical shape with length /. Pipeline bending stiffness if £J, where £
is the Young modulus and J is meridian moment of inertia. Liquid is supposed
to be homogeneous, incompressible, ideal with density £ . Its longitudinal mo-
tion is considered to be given.

Further we consider the most complex case, when one edge of pipeline is fixed
with foundation, another one is fiee. In the general case foundation can perform
translational or rotational motion. Let us denote by u(x,#) transversal displacement
of certain point of pipeline (defined by longitudinal variable x) at time instant z.
Translational motion of foundation is described by longitudinal ¢ and transversal

g, displacements. Its rotational motion is characterized by angular velocity @

about axis, which corresponds with longitudinal axis of pipeline in non-perturbed
stated. The general configuration of the system is shown in Fig. 1.
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Fig. 1. System pipeline — liquid on movable foundation

For mathematical statement of the problem we make use of the Hamilton-
Ostrogradskiy variational principle [1]. Difficulties of description of the con-
sidered system are defined by mixed description of system components. Liquid
motion is described in the Euler variables, deformation of pipeline is described
in the Lagrange variable. For determination of kinetic energy of liquid let us
consider element of pipeline on system motion. For certain time instant ele-
ment of pipeline is turned for angle @ relative to axis Ox. For determination of
this angle we obtain
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Let us define velocity of liquid in absolute reference frame. Due to proper-
ties of ideal liquid only normal components of liquid will produce action on
pipeline. Then, we can determine components of liquid velocity as
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du
dt

Here the upper index p denotes belonging of the corresponding component
to pipeline Normal vector to pipeline is 7 = {—sin8;cos8}. To obtain normal

v, =VeosO+V"; v =Vsing+ZL4vP.
X z

components of velocity we project velocity onto axes Ox, Oz correspondingly

VP =§.ii=—&_ sin@+ ¢, cos6, finally we obtain
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for square of velocity of liquid
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If we take into account that =~ =0 we obtain expression
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Then the Lagrange function of the system will be
1
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This Lagrange function corresponds to nonlinear model of dynamics of
pipeline with flowing liquid, which performs translational and rotational mo-
tion on movable foundation. This model takes into account centrifugal, elastic,
Coriolis forces, forces of longitudinal compression [1, 6].

If we use modal decomposition of motion with respect to normal modes
A;(x) with amplitude parameters c;(t) u(x,t)= zci (t)A;(x) we obtain the

i
following discrete model of the system in amplitude parameters (now we re-
strict ourselves by the case of given motion of foundation)
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This system of ordinary differential equations with denotations [1] was
used for analytical investigations and numerical simulation of problems of
pipelines dynamics.

2. System motion for longitudinal and translational vibrations of foun-
dations. In the case of translational motion of foundation pipeline can perform
both forced and parametric oscillations. The most interesting effects are caused
by vibrations, when liquid flows at velocity 75% of the critical one. In this case
vibrations of foundation create condition for manifestation of alternative posi-
tion of equilibrium. Typical behavior of pipeline for transversal and longitudi-
nal excitation of motion is shown in Fig. 2—4.

Fig. 2 shows variation in time of oscillations of pipeline free and for trans-
versal vibration of foundation with amplitude 2 mm and frequency 20 1/s
(close vicinity of resonance).
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Fig. 2. Oscillations of pipeline free end for transversal vibration of foundation ( @ = 20 )

It is seen from figure that after certain transient period of motion pipeline
begin to oscillate near position of alternative equilibrium state, later due to
permanent energy supply to the system oscillations increase and system passes
again into oscillations with respect to initial straight shape. If we double fre-
quency of vibration of foundation this change between three (initial, upper and
lower) positions of equilibrium can happen systematically.
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Fig. 3. Oscillations of pipeline free end for transversal vibration of foundation ( @ = 40 )

In the case of longitudinal vibrations of foundation we observe manifesta-
tion of parametric resonance for doubled resonance frequency and for different
values of initial perturbations of pipeline. Fig. 4 shows variation in time of the
first and second amplitude of pipeline oscillations. In this case longitudinal
vibrations of foundation occur with amplitude 2 mm, with frequency 40 1/s and
with initial perturbation with respect to the second normal mode 4,7 mm. Ve-
locity of liquid was 75% of the critical one.

Puc. 4. Variation in time of amplitudes of the first and second normal modes

As it is seen from Fig. 4, second normal mode performs oscillations in a
vicinity of initial straight shape of pipeline. However, the first normal mode
performs complicated oscillations with manifestation of transition to alternative
potion of equilibrium and modulation of oscillations.

3. System motion with liquid velocity, which exceeds critical values. The
most complicated case of the system motion is connected with system behavior
for liquid velocities, which exceed critical velocity. In this case oscillations
with respect to straight shape of pipeline become unstable. However, two new
stable positions of equilibrium can happen depending on character of initial
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excitation. If we analyze the motion equation for existence of alternative equi-
librium position, we must suppose ¢; =0. This condition gives the following

alternative positions (Fig. 5). In Fig. 5 x corresponds to longitudinal coordi-
nate, vertical axis denotes amplitude, every line corresponds to velocity of lig-
uid flow, which is given as factor relative to the value of the critical velocity.
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Fig. 5. Shapes of alternative positions for different values of liquid velocities

Fig. 6 shows stability chart for different values of velocities of liquid flow,
which was obtained on the basis of linear model for four normal modes. We
verify numerically general aspects of system behavior by means of nonlinear
model of pipeline, which takes into account 12 normal modes and got good
concordance with qualitative results.
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g. 6. Stability chart for pipeline in the case of different velocities of liquid flow
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4. Dynamics of pipeline on rotating foundation. In the case of behavior
of pipeline on rotating foundation rotation is reduced to supplementary term,
which acts similar to centrifugal force. General structure of equations does not
change. Moreover, normal modes in this case remain to be the same as in the
case of pipeline without rotation with the same wave numbers £; . At the same

time frequencies p; change in the following way

pi2 = kl»4a2 -o?, where a’= EJ

u+p
For estimation of rotation effect on critical velocity of liquid flow we
write down linear equation of system motion in discrete parameters for the first

normal mode

51 = chl,
where Q is frequency of pipeline oscillations. From motion equations we ob-
tain
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Critical velocity Vclr can be obtained from the condition to zero of frequency
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From the expression of critical velocity it is seen that rotation causes lowering
of critical velocity.
We consider numerical example of pipeline oscillations under the presence
of rotation of foundations and initial kinematic excitation ¢ (0)=0,01. We

consider system motion for velocity of liquid flow, which is equal to half of
critical velocity in the case of absence of rotation. Rotation was changed until
w =207 . In the considered case critical velocity is equal to 20,94 m/s. We
shall consider velocity of liquid flow 10 m/s. Period of oscillations of the first
normal mode is 7=0,1567s. Frequency of oscillations will be
Q,=27/T =40,1/s.

The most typical modes of behavior of rotating pipeline manifest for
w; =0, w, =107, w3 =167, w, =20x. Variation in time of amplitude of
the first normal mode is shown in Fig. 7. Here curves are numbered according
to indexes of of frequencies.
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Fig. 7. Variation in time of amplitude of the first normal mode for different angular velocities
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As it is seen from figure for @, =0 stable mode of motion occurs in the
system. On increase of angular velocity to @, =107 stability of processes is
not violated, however, frequency of oscillations decreases. Further increase of
angular velocity w; =167 corresponds to attainment to critical velocity. In
this case oscillations are performed near alternative position of dynamical equi-
librium. Here frequency of oscillations considerably increases and becomes
even greater than in the case of pipeline without rotation. So, rotation in this
case provides effect of stabilization. Further increase of angular frequency to
@, =20r results in considerable growth of amplitudes of oscillations and
transition of oscillations from vicinity of alternative position of equilibrium
state and passage to unstable mode.

So, rotation of pipeline foundation results in origination of three modes of
dynamical behavior of pipeline. Until angular velocities about @ =157 steady
oscillations in a vicinity of initial straight position of pipeline occur. Here on
increase of angular velocity frequency of oscillations decreases, For the range
157 <w <187 oscillations of pipeline relative to straight position can loss sta-
bility and transit to oscillations near alternative position of equilibrium, more-
over, frequency of oscillations increases and becomes greater than in the case
of pipeline without rotation. For oscillations of pipeline in the range @ > 187
oscillations are performed with increasing amplitude; loss of stability relative
to alternative position of equilibrium can happen.

Conclusions. On the basis of variational approach we constructed method
for investigation of complex of problems of nonlinear dynamics of pipelines on
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movable foundation for wide range of velocities of liquid flow, including ve-
locities, which increase critical values. Conducted investigations showed that
mobility of foundation promotes situation when system can reach effects of
loss of stability of straight line shape of pipeline even for velocities of flow,
which are lower than critical velocities for immovable foundation of pipeline.
Both forced and parametric mechanisms manifest for translational motion of
pipeline foundation. In the case of rotation of pipeline foundation variety of
effects is also.
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Jlumapuenxo O.C., Jlumapuenko B.O., Maoxcuo M., Timoxin O.11.
MPUKJIAIHI 3AJAYI IMHAMIKU TPYBOITPOBOAY 3 PIIMHOIO, IO TEYUE

Heniniiini npukiaafi 3agadi JUHAMIKH TPyOOIPOBOAIB 3 PIANHOIO, IO TEYe, PO3IIBIAI0THCS
Ha COHOBI KOMIUIGKCHOI'O MiJIXO/Y, 10 BKJIFOYA€E BapialliliHy MOCTAHOBKY 3aJa4i 3 aBTOMAaTHYHUM
BHBEJICHHSIM JIMHAMIYHUX TPAHUYHHUX YMOB, MillIaHUH eHJIePOBO-JIArpaHKeBE OIMHKC TiPO MPYKHOT
B3a€EMO/IiT, METOJl MOAAJBLHOI JCKOMITO3HII1, IKICHE 1 YHCENbHE JOCIIKSHHS MOBEIHKH CHCTEMH.
BuBuaeThcsl MOBEJiHKA CHCTEMH Ha PyXOMiH OCHOBI AN Tedil PiIMHM i3 IIBHAKOCTSIMH, SIKi
HaAOJIMKAIOTHCS JI0 3HAYCHb KPUTHYHHMX LIBUAKOCTEH YK MEepeBepIIyloTh iX. Pi3HI BapiaHTH pyxy
OCHOBH BKJIFOUYAIOTh BiOpallii, obepraHHs. J{OCHi/KeHHs MOKa3ald HasBHICTh albTEPHATHBHOIO
MOJIOKEHHS PIBHOBArd B OKOJI SKOTO BiJIOYBAIOTHCS KOJIMBAHHS B JISIKOMY Jiara3oHi MIBUIKO-
cTeit Teuil piguHU.

Kurouosi ciioBa: HelniHil{HAa NpuKIIaHa 3a/ja4da, TUHAMIKa TPyOOIPOBONY 3 PiIHHOI0, IO Te-
4e, KOMIUIEKCHHHU MiAXix, BiOpauii, o0epTaHHs pyXOMOI OCHOBH, aJbTEpPHATHBHE IIOJIOXKEHHS PiB-
HOBAary.

Jlumapuenxo O.C., Jlumapuenko B.O., Maoscuo M., Tumoxun A.I1.
IPUKJAJHBIE 3AJIAUA JUHAMUKU TPYEONPOBO/IA C IPOTEKAIOIIE
KUJKOCTBIO

HenuHelinple TpUKIAIHBIC 33/1a4d JHHAMUKA TPYOOIPOBOJOB C MPOTEKAOIICH JKHIKOCTHIO
paccMaTpUBAIOTCS. HAa OCHOBE KOMIUIEKCHOTO IIOAXOJa, BKIIOYAIONIEr0  BapHAI[MOHHYIO
MOCTAaHOBKY 3a/ladyd C aBTOMATHYCCKHUM BBIBOJOM JHHAMHYECKHUX TPAHUYHBIX YCIOBH,
CMCIIAaHHOE  JUJICPOBO-JIATPAHKEBOE  OMHMCAHHE THAPOYIPYrOro B3aUMOJCHCTBUS, METOJ
MOJIaJBbHOM JIEKOMIIO3UIINHN, KaYeCTBEHHOEC W YHCIICHHOE HCCIICAOBAHHE IOBEICHUS CHCTEMBI.
Hccnenyercst MOBEACHHE CHUCTEMbl Ha MOJABM)KHOM OCHOBAaHMH JUISl TEUCHHH HKUAKOCTH CO
CKOPOCTSIMH TPHOIMKAIONMXCSA K 3HAYCHHSIM KPUTHYCCKHX CKOPOCTEH MIIM MPEBOCXOMSAIINM HX.
Pa3Hble BapuaHTBl JBMXKCHHS OCHOBAHHUS BKIIOYAIOT BUOpauuu, BpalleHue. MccienoBaHus
MOKa3aJli HAaJIWYUe aJbTePHATHBHOTO TIIOJIOKCHHS PABHOBECHS, B OKPECTHOCTH KOTOPOTO
MPOUCXOASAT KOJICOaHHs B HEKOTOPOM JIHAIa30HEe CKOPOCTEH TEUCHMUS SKUIKOCTH.

KaroueBble cJioBa: HENMHCHHas TNpUKIaaHAs 3ajgada, JUHAMHKa TpybompoBoma ¢
MPOTEKAMOUIeH JKUJIKOCTbIO, KOMIUIGKCHBIH TOJXOA, BHOpAalMM, BpallCeHHE MOABHKHOIO
OCHOBaHUSI, AJIbTEPHATUBHOE TTOJIOKECHHE PABHOBECHSL.



