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Summary. We have developed a general ap-
proach for assessing critical-strength for the cen-
tral-compressed steel elements, what have an ini-
tial imperfections. The metod is made on the basis
of experimental data. The method is a development
of the method Tymoshenko-Southwell. In work we
show of the solutions several tasks. We demon-
strate the possibility to determine of critical-
strength for the central-compressed steel elements
on the basis of experimental data initial geometric
imperfections. The results can be used at checking
the technical condition of the Central compressed
rod in the survey metal structures trusses, columns,
structural designs.
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shenko-Southwell.

INTRODUCTION

The fundamental the methodology of buck-
ling of columns is developed the hundreds
years and in solving of the problem to deter-
mine of critical-strength  for  central-
compressed steel elements is research [2 — 7].

Separate important task to determine the
stability of the rods is to analyze the influence
of initial imperfections [1, 8 — 11].

With the technical inspection of steel struc-
tures no data on initial deflection longitudinal
bending of the compressed elements with ini-
tial imperfections [13, 14 — 17]. So it is impor-
tant improve the method of finding of critical
load the elements by measurement of deflec-
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tion of the strut. [18 — 22]. This methodic
makes it possible to determine the critical
force based on experimental data.

Analysis of experimental data centrally
compressed bars dedicated a number of out-
standing works [3, 5, 7, 10, 13].

In the article the theoretical studies analyz-
ing experimental data of elastic central-
compressed steel elements with initial geome-
tric imperfections.

PURPOSE AND METHODS

This methodology of buckling of columns
with initial imperfections is based upon of re-
search Tymoshenko S.P. and Southwell R.V.
[2, 7]

But there is a need on synthesis methodolo-
gy for the analysis of experimental data cen-
trally compressed bars considering initial
geometric imperfections.

The purpose of research, which set out in
Article, is generalization theoretical approach
to the analysis of the stability of the central-
compressed steel element with the initial geo-
metric imperfections. Research Methods based
on analytical studies of centrally compressed
rod with initial imperfections.

The initial imperfections is initial geometric
imperfections, initial deflections, random ec-
centricities application of longitudinal force.
So buckling centrally compressed rod with ini-
tial imperfections we see to as a deformation
the noncentral-compressed element.
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RESULTS AND DISCUSSION

The general equation buckling noncentral-
compressed element has recording in the form
of linear differential equation:

n+k*n = =k (81 sin(@z/l) + e), (1, a)

e k2= NI%/ (EL).

Differential equation (1, a) is second order
liear nonhomogeneous differential equation.
The general solution of this differential equa-
tion (1, @) has unknown factors that depend on
the boundary conditions of strut.

The general solution of the second order
nonhomogeneous linear equation can be writ-
ing in the form.

n = Cy fysin(kz/)+ C, fucos(kz/l) -
—C3 85 sin(nz/l) — ey, (1, b)

In (1, b) ngs =Cy f sin(kz/1)+C, frcos(kz/l)
is a general solution of the corresponding ho-
mogeneous equation, nps = -Cz 6 sin(nz/l) —
ey, IS any specific function (particular solution)
that satisfies the nonhomogeneous equation

1, a).
Special function nps can be represented as
the sum of two functions:

Nps =Npso+ Npsb- (1, C)

Partial solution ms; to the differential equa-
tion (1, a) provides a formula for determining
factor Ca.

Npss = C30 ¢ sin(nz /1)
n” +k’n=-k*3, sin(nz /1),
~n*Cd, sin(nz /1) + k°C,d  sin(nz /) =
=—k*§ sin(nz /1) —n*C, + k*C, = k>3 .

C=———— = . (1, d)

For element, which has boundary condi-
tions of: hinged — hinged, and which load is
noncentral compressing, we have decision
without initial bend initial imperfections.
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N = Cifsin(kz/l) + Cofmcos(kz/l) — ev. (2, @)

Boundary conditions of: hinged — hinged is
in form writing.

Z:0,T]o:0.22|,1”|o:0.
These boundary conditions give a system of
linear inhomogeneous equations and can be

expressed in the form.

Cme - eb = 0,
Cy fmsin(k)+ C, fcos(k) —ep=0. (2, b)

Accordingly, it coefficients is.

Ci e{l—_cos(k)}.
sin(k) (2,¢)

C,f,=e,.

The general solution second order linear
nonhomogeneous differential equations (1, a)

will be.

5 (2,d)
+e{cos[g)—l}+ .
I T
1

When coordinate z/l =1/2 we have maxi-
mum displacement of the middle section of the
column.

|:1 COS :| ( j |: ( j :| 6f0
Nz = € sin +€,| cos 3 .
sm T 1

k2
1-cos(k) +Zcos( ] Zcos( )
N = & il .
ZCOS( ) n—z—l
2 k
l—COS(kj
2 o
N = & k + 2
cos| — —-1
3] %
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Y R -

nZ“:l/Z b COS(k/Z)
F_l
The last formula (3, ) is the formula secant
and it is combined with the formula for the
calculation of the growth-initial deflections at
longitudinal bending. Taylor's theorem gives
an approximation value secant by order Taylor

polynomial:

1 1 1
-1= ~ . 3,b
cos(kl / 2) 8 , ¢ (3.0)
— - -1
k k?

Finally, the formula of the maximum
deflections of the middle section of the metal
element has record.

e +0

Noaip = bnz =, (3.0
oL

8 +0y _ m’El,
T.IZ:|/2 - TEZEIX * [ |2

27_1

I“N
e +0

Mot = a =3 (4)
_Ter 1

N

E — Modulus of elasticity in tension,

— Quadratic moment of inertia,

| — Reduced (effective) strut length, equiva-
lent length of column.

N, — Euler’s buckling load.

The same conclusion can be justified using
the approach in [2, 3, 7] for any boundary
conditions of the column.

Record the total-solutions of the corres-
ponding homogeneous second order differen-
tial equation (ELn” + N = 0) has this form.

— . Nnz S nnz
Nen =csansm|— + chzn cosl—. (5)
n=1 n=1

If the element has initial geometric imper-
fections, it is in part the decision of general
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differential equation of longitudinal bending
column ElLn+ k®Nn =—k? (80 + ep) can also be
represented as a series of trigonometric func-
tions.

Since the initial geometric imperfections
are common to the rod, its record is different
from the coefficients of trigonometric func-
tions and will vary by operator ason.

Tz

ZCSOII SIH +Z asOn s0n COS I (6)

Substituting these solutions to the differen-
tial equation (1, a), that describes the stability
of the element.

If you equate the coefficients of the same
trigonometric functions in equation (6), then
you get a recurrence formula to determine the
coefficients of the trigonometric functions,
which describe the different possible harmon-
ics deflections of the rod at the loss of stability.

2 2
C —&' N = nn EIX .
sln — 2 2 ’ n 2 ’
n°n°El, I
LI O |
|2
Cson__ . __90nCson

C

sin :N—1 Cson _N—
SR

Full deflection of the column will be equal
to the amount of deflection longitudinal bend-
ing and of additional longitudinal deflection
from the initial bend initial imperfections.

ns =ngs +neO

. hmz
+cg s1n|—+

LN (7,b)

- Cqo nnz
+> 2, s t¢ cos =~

Then have
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— S CsOn : % S asOnCSOn % (8)
1]5 Z—N Sin | +Z—N COS | .
n_ll_i n=1 1_7
N N

n n

Problem 1. Maximum displacement deter-
mine for the central-compressed steel element
considering initial geometric imperfections.
The rod has boundary conditions: hinged —
hinged (column pivoted in both ends). These
conditions give the formula.

M=o = 05 Ny =03
S nCson
T]s :nsn +ne0 :z =0 NO = 0 _>a.r0n = 0
n=1 1_7
N

n

(9, a)

For the cross section, which has a maxi-
mum displacement, z=1/2, we have.

0

Cop . T C :
Norax = D, — 2 sin — + —E—sinm +

1 2 (9, b)
03 ain O 503 3n
+ N S|n?+ N Sln?'i'
1-— 1
N3 N3

Members in (9, b) with even indices disap-
pear, a true formula is.

Cso1 Cs03 Cso5
MNsmax = - + . (10)
N 4NN
1 N, N

Coefficients cy; accept the results of mea-
surements of samples rods. For rod, that has
hinged support in both ends, a first harmonic is
a dominant, and it’s the sinusoidal shape. Now
the maximum displacement will depend on the
ratio of the current force and of the critical
load.

2
C, n°El,
Msmax = #lN; Ncr = I—z . (11)
1-—
N

cr

This decision is important for determine the
maximum deflection rod for any value of the
longitudinal force provided N<Nq;.
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Problem 2. Determine the initial geo-
metrical imperfections at a certain meaning
full load and moving of the middle cross sec-
tion of the rod. This is the inverse problem to
problem 1.

We know of longitudinal force N;, of criti-
cal force N and we know displacement of rod,
it is possible to determine the initial geometric
imperfections.

Csor =M [1 —Nij (12)

cr

Problem 3. Method is of determining addi-
tional deflectionn, . Since the total deflection

consists of initial deflection and deflection of
buckling, we have a right to record this at

neO = csOl.

C,
Nst = Nsmax ~MNeo = LlN_CSOI.
-
cr (13)
T] _ NcrcsOl _Ncrcsm +NCSOl _ csOl
sf - :
Ncr -N & -1
N
C,
Ny = NSL (14)
a1
N

Equation (14) coincides with the formula
(4). Thus, the approach shows the relationship
between the method of Timoshenko S.P. and
the method of Southwell R.V.

Problem 4. Determination of initial imper-
fections elastic buckling element and its of
critical load. A few experimental data of addi-
tional deflections (bending) the central-
compressed element is: ns, Ms2, Ms3. Corres-
ponding values of compressive strength we
know too. We proposed the following se-
guence calculation and determination of initial
geometric imperfections of column and defini-
tion of critical force.

According to the formula (14) we can com-
pose system of two a linear equations with two
unknown variable members. The first un-
known member is variable parameter of bend-
iNg: Ms1, Ns2,,» the second unknown members is
the critical load buckling shapes of the column.

NiaBOOHI TEXHOMOTNIT ¢ 04/2016, 89-96
MpomucnoBa Ta umMBinbHa iHXeHepia



ApxiTeKkTypa i 6y):LiBHVIL[TBo

_ CsOl
1ﬂ|sl N N )
N” -1 Coor = M| ———1
SN ' (15, a)
Cso1 N
Nss = Cs MNs ( < _1)
Ncr 1 01 3 N3
N,

Divide the first equation of the system
(15, a) on the second equation and thereby we
exclude the unknown parameter.

Ncr _1 Ncr_N3
h: N3 N NS :Nl(Ncr_N?:) .
e No g NN Ny(N,-N,)
Nl Nl

Next, solution of system linear alge-
braic equations (15, a) leads to linear equation
with one unknown parameter: N .

(Ncr - Nl) NBnSl = NlnS3 ( NC’” o N3) )
&(m@_@ :(h_lj_ (15, b)
N; (N, g Na

Solution of linear algebraic equation (15, b)
can be represented by.

Ncr :L’ Ncr :—nss' (151 C)
(I\I:L%_]-J [1_ N3n51j
N3 T]sl Nlns3
According to the formula (15, ¢) can calcu-
late the upper critical load, but values lower
the critical load is calculated by the formula

(15, d), what is obtained using other experi-
mental data.

&(&M_q :(h_lj
N, (N3 ng, Ms2
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N IISZ . N Ils3
(NZ I|53 ]j (l N3 IISZJ
N3 IISZ N2 IISS

The initial geometric imperfection will be

i
nsl—_l (16)

Mso1 = Cso1 = Nst
('\Ilnss_lj
N; ng

. (15, d)

writing.

According to the formula (12) maximum
additional deflection ny ,, of the column ex-

cluding initial imperfections look like so.

T1501 . (17)

Total deflection of critical load of the loss
of stability element we can to calculate at for-
mula.

nsmax = T]sf max +TQISOl'

T]s3

-1

(nﬂ J_l 1 | asa
N )| N

N, N N,

T]sl _1 1

NlnsS_lj 1-— N,
N; ng N

cr

nsmax = nsl (

1’lsmax :nsl (

Thus generalized approach makes it possi-
ble to identify critical load and initial geome-
tric deflections on the results of a small num-
ber of experimental data.

Problem 5. Equation (15, b) has a detailed
record.
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&(&M_1j=(h_1]_ (19)
N, \ Ny gy Ns1

We introduce notation for relationship ex-
perimental data of deflection of column —C_,

and attitude critical force of the column to the
value longitudinal force of the column at test-
ing — pn, that corresponds derived displace-
ment.

N
Jeogh Seeph. (20)

Na N,

We obtain the equation, which connects
two parametric functions: deflections and crit-
ical load.

N
PGl @
1

This is the equation (21) is the hyperbolic
function, and is the universal equation of phys-
ical and mathematical model describing the
loss of the stability column.

We determine the asymptotes of the hyper-
bolic function and use this entry.

11

2 —C" (22)

Thus, when (2 — o, we has the coor-
dinate of the horizontal asymptote.

Cgl—mo
p? = L2 —>0—>py > N
N 1 1

N, &

If we have in sufficient quantity of experi-
mental results, the experimental value of the
critical force column at loss buckling will ap-
proach to the theoretical value of the maxi-
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mum critical load at deflections growth to in-
finite.

N —N

cr crmax

Due to our research is calculated the upper
limit of critical load and the lower limit of crit-
ical load and we can identify difference be-
tween their values to determine the nature of
the buckling columns. If the difference be-
tween the upper and lower values of critical
load is small, it means that the lost stability of
the column is elastic. If the difference between
the upper and lower the critical load is big, it
we have to the conclusion that the buckling
took place with the development of limited
plastic deformation, it is inelastic buckling.

The research results are important
when analyzing the results of the inspection of
metal structures for civil use and engineering
facilities operating in difficult conditions, sur-
face and underwater structures [23].

CONCLUSIONS

In experimental studies of stability the ele-
ments always buckling occurs suddenly and
the maximum critical force will not to deter-
mined indeed.

Fixing critical load and corresponding
strain measurement is always the difficulty,
since the loss of stability takes place fast at
increasing deflections. When examining and
monitoring structures we have the ability to fix
the deflections of rods under load, it the def-
lections and force is not close to critical.

Therefore, it the research allows to define
the critical load and initial imperfection by the
analysis of data relationships deflections and
of the load, which is less than the critical load.

It is shown that the maximum value and the
actual deflections of elastic elements with ini-
tial imperfections at longitudinal bending,
which will be defined by the methodology
Tymoshenko S.P. and by the approach Saus-
vella R.V. are identical.

We have shown that the method Timo-
shenk-Sausvella can be used in the analysis of
experimental results of research elastic buck-
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ling of columns and inelastic buckling of col-
umns
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AnHoTamus. Pa3paboraH 00OOIICHHBINH MMOJ-
XOJ[ JUIsl ONCHKH KPUTHYECKOW M CHJIbI CTAIBHBIX
LEHTPAIBbHO-CKATBIX CTEP)KHEH ¢ HavyaJbHBIMU
reOMETPUUYECKHMMHU HECOBEPIIEHCTBAMH H C yYETOM
WCTONB30BaHUS  DKCIIEPHMEHTAJBHBIX  JIAHHBIX.
[penocraBneHo 0OOCHOBaHWE TEOPETHYECKOTO
nonxona. B cratee o0oOmiaercss m pa3BHBaETCS
METOJIOJIOTUYECKUI TOAX0A JUIS  ONpeIeIICHUs
KpPUTUYECKOH Harpy3ku MpeUIoKEeHHbIH TrMo-
menko C.II. u Southwell R.V. Ilpu onpeaenennun
MaKCUMaJIbHBIX IIPOrHOOB NPU MOTEPE yCTOWIHBO-

95



ApxiTekTypa i OyaiBHUIITBO

CTH YIPYTHX CTEp)KHEH C y4yeTOM HayallbHBIX He-
COBEPLICHCTB M CIy4YalHBIX 3KCLEHTPUCUTETOB
[IOKa3aHO TOXKIECTBO 0o0oux noxxoxoB. lIpusene-
Hbl peIleHus] HEeCKOJbKUX 3ajnad. IlokazaHa BO3-
MOJKHOCTb OIPENENIATh Ha OCHOBAaHWU SKCIEpU-
MEHTAJIbHBIX JaHHBIX HadalbHble T€OMETPUIECKHUE
HECOBEpLICHCTBA. Pe3ynbpTaThl paboThl MOTYT OBITH
WCIIOJIb30BaHbl MPHU TPOBEPKE TEXHUYECKOIO CO-
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CTOSHUS LIEHTPAILHO-CKATBIX CTep)KHEH Ipu 00-
CIIETOBAaHUH METAJUTMYECKUX KOHCTPYKIHUH (epm,
KOJIOHH, CTPYKTYPHBIX KOHCTPYKIIHHA.

KiroueBble cioBa: cranbHble KOHCTPYKIIMH,
YCTOMYHNBOCTH, HaYallbHBIE HECOBEPIIIEHCTBA, KPH-
TH4ecKas cria, MeTof] TuMomenko-Caycsena.

NiaBOOHI TEXHOMOTNIT ¢ 04/2016, 89-96
MpomucnoBa Ta umMBinbHa iHXeHepia



