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Summary. Here author investigates the stress-
strain states of an elastic layer engaged in impact
with a hard cylinder with flat surface. The initial
contact proceeds by that flat surface. We consider
the contact problem with a dynamically changing
contact zone. We use the same approach as in [2,
3], which is based on the reduction of the basic
dynamical equations of the system stamp-layer to
an infinite system of Volterra integral equations of
the second kind. This approach sets the stage for
the efficient numerical analysis of the problem and
for reliably determining the quantitative dynamical
and kinematic characteristic describing the
collision process as functions of the initial impact
velocity and the parameters of the elastic layer.
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INTRODUCTION

Problems of impact hard and elastic bodies
on the deformable bodies remain relevant and
researched in  various models and
formulations. One of the most important
direction of such research is to identify the
characteristics of destruction incised beam
specimens at their destruction at the three-
point bending wusing indenter. Relevant
experiments make it possible to identify much-
needed mechanical characteristic of the
material — destruction toughness related to the
stress intensity factor at the top of crack.

Since the process is dynamic and may be
accompanied by substantial plastic
deformation, its study is complex and
multifaceted problem, which requires analysis
of the impact on the experienced striker body,
dynamic interaction of body and supports,
beginning the process of destruction and its
development. This subject is very wide and is
associated with numerous publications. It were
selected for that paper only sufficient
minimum of such publications. In [14] was
investigated dynamic problem about pipeline
with flowing fluid inside with taking into
account Coriolis force. In [1...5] were
investigated dynamic problems of outside
contact pressure to the metal constructions.
The nonstationary problems [6...11] of impact
interaction of absolute hard flat indenter with
incised in the median section of beam
specimens in  dynamic  elastic-plastic
formulation are belong to the underlie theme.
In paper [12] three dimension quasistatic
problem in  elastic-plastic ~ formulation
corresponding to [1, 3] was solved. It was
revealed that stresses significantly different
from the stresses obtained from the solution of
a similar problem in the dynamic elastic-
plastic formulation. In paper [4] it is solution
of problem of plane strain state from three-
point bending of the beam sample with middle
notch. It was taken in account the process of
unloading of the material. The plane stress
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[5, 6], stain [8] and spatial [10, 11] problems
of growing crack simulation were solved. In
[5, 10] the crack length was increasing when at
the top of crack the maximal stresses were
absent. In [6, 8, 11] the crack was growing by
generalized local criterion of brittle fracture.
Destruction toughness of the material was
determined on the base of solutions of plane
strain [7] and spatial [1, 9] problems. The
approach  of studying the dynamic
development of cracks in the experimental
samples [26 — 29], based on the method of
Rayleigh was proposed.

The bulk of publications of study of the
strain-stress state of the impact interaction is in
elastic formulation. In elastic formulation
plane [2, 15] and axisymmetric [16] problems
of the impact of hard bodies on the elastic
layer were investigated. In [17] it was
investigated the effect of nonstationary loading
on the front surface of the elastic half-strips. In
[23] the problem of flat elastic dynamic
interaction of the absolute hard body with
homogeneous isotropic elastic half-space at
supersonic stage. Here it is assumed that the
contact zone can be multiply region. For
solving the initial Cauchy problem for a
system of quasi-linear differential equations
the hybrid methods were developed. The
impact of the hard cylinder [2] is interesting as
a limiting case of the impact of an elastic
shells [13].

In this paper it was used an approach [2, 13,
24], which based on the reduction of initial
dynamics equations of the system shell-layer
to the infinite system of \olterra integral
equations of the second kind. The size of the
initial contact zone between cylinder and top
surface of the layer is equal to the width of
cylinder flat surface.

STATEMENT OF THE PROBLEM

A hard cylindrical body with flat surface
moving  transversely along a  path
perpendicular to the surface of an elastic layer
0<z<H reaches the surface at the time
t=0. Initial contact is made along the plane
flat surface which is parallel to axis of the
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cylinder. We attach a moving cylindrical
coordinate frame rOz’ to the stamp, its z axis
coinciding with the axis of the cylinder, and
with the layer we associate a fixed Cartesian
coordinate frame Xyz .
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Fig. 1. Schema of system stamp-layer

The stamp penetrates (Fig.1) the elastic
layer at a velocity Vy(t), (0<t<T) with the
initial value Vo =V5(0), where T is the total

time of interaction of the stamp with the layer.
We introduce the dimensionless variables.
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where p,u, K,C, and C, are the density, the

shear modulus, the volumetric strain modulus,
and the wave propagation velocities in the
elastic layer.

The equations of motion of the elastic layer
are written in the form [3].
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If the shear modulus p is set equal to zero,

the equations of motion of the elastic medium
go over to the acoustical equations. With
Eqg.(1) taken into account, the physical
quantities are expressed in terms of the wave
potentials by the relations
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where u=(uy,uy,u,) is the displacements

vector, and o,, and o,, are the components of

the stress tensor. In solving the problem, we
use the same approach as in [18, 19, 21],
which enables us to identify the linear
coordinates along the surface of the layer and
the projectile in the early stage of penetration,
thereby validating the approximate relations.

According (2) for the displacement u, and
pressure p follow dependents will be

performed
u, (t,%,0) = wy (1) — H( x| -d) x
x(l—w/l—(| X| —d)zj,

©)

t
wr (1) = [V (1)dt, p(t,X) = =0, (t, %,0), X< X .
0
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Linearized boundary conditions are

Dal V() =v @ <X O
z=0

S, =0, X >x"(V), (5)

GZX|z:O =0, |X| < o,

At the boundary layer z=h there is hard
grip condition.

For interaction time O0<t<T from the
band we separate a finite size rectangle
{|x|<l, 0<z<h}, whereupon we can treat

the problem of impact on the layer as the
problem of impact on a strip. The length of the
rectangle | so that the disturbances will not
reach its lateral boundaries:

*

IX]=1 |15 a(T —tg)+ X" (to), ddit

t=t,

We assign zero-valued initial conditions to
the problem and on the lateral surface there are
sliding fixing conditions

x|=l =0,
(6)

op oy
o =% Vheo =], =0
t=0 t=0

uX|\x\:l =0, szh
(p|t:0 -

The movement of the cylinder as body has
determined from Newton's second law

asz

M&tz

= _F(t)! VT (O) :VO’ Wt (O) =0, (7)

where F(t) — reaction force of the elastic

layer, which is determined taking into account
(3), (5) as an integral of pressure on the
contact area:

X ()
F(t)=2 [ p(t,x)dx.
0
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Taking into account the elevation of the
medium and the slowing of the cylinder
penetration into the elastic medium, we

determine the boundary of the contact zone X
from the condition:

wr (1) —u, (t,X7,0) —H( X |—d) %
x(l—,/l—q x*|—d)2)=

{0,|x|< x"(t), €<0, |x]>x ()}

SHEMA AND METHODS

Taking the Laplace transform of Egs. (2)
with respect to the variable t, where s is the
parameter of the transform, and applying
Fourier separation of variables, we write the
general solution of the equations, subject to the
conditions of extinction of the disturbances at
infinity, in the form [2, 24]

0" (5:%2) = X Ay(8) %
n=0
xexp(— 2,/s% /o +xﬁjcosknx+
+ 3 B, (s) exp(zw/s2 [a? +22 jcosxnx,

n=0

vH(s.%2) = 3Co(s) x
n=0

xexp(— 7:/s2 B2 + 22 jsin AX+  (8)
+ > Dy (s) exp(zw/s2 /B2 +xﬁjsin ApX.

n=0

where A, =nn/l, n=0,00 denotes the Eigen

values of the problem, determined from the
conditions on the lateral surfaces of the half-
strip (6).

The functions V, u,, 6,,, 6,, on the
surface of the medium of layer are represented
by series in the system of Eigen functions of
the problem and the function p is represented
by trigonometry series:
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V(t,x,0) = >V, (t)cosi,X,
n=0

U, (t,%,0) = > U, (t)cosr, X,

n=0
65, (t,x,0) = iozn(t) COSApX, ©)
n=0
o, (t,%,0) = iczxn (t)sini, x.
n=0
p(t,x) = i P, (t) cos(nx). (10)
n=0

In (3) using (9) and making use of the
orthogonality of the trigonometric functions
the expression for the n-th harmonic of
pressure will be:

Pa(®) = = 3 ()2 0
n=0

0
Yo (x") = = [cosnxcos 2y x dx,
0
_ T
NZ = [cos? nx dx. (11)
0

Next the problem for equations (1) with
follow boundary conditions has solved.

Yzl V() 0y, =0, (12)
ot z=0

Uy|,_, =0, uy| . =0.

Satisfying conditions (5) with allowance for
(8) and (9), applying the inverse Laplace
transform, and invoking the convolution
theorem, an equation that establishes an
interrelationship between the components of
the vertical part of the velocity and the normal
stresses on the surface of the layer has been
obtained:

t
G,n(t) = —oc[Vn (1) + [V () F, (t - r)dr], (13)
0

where
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- t
Fo () = Fo () + 01 (n) + [ Qo (BRn&)d2 (0t - &) +
0

+Jo (01 n&)e3(n,t-E))de.

o () = —ag Iy (0hnt) + 2082212 (Tg (ahnl) -
- j0 (ant) - Jl(axnt) + Jl(m"nt)) + ant(bJo (a}‘nt) -
= 3o (Bht)) + (2= 52)Tg (0 t) — To (Bha)],

oj(nt)=v;(n0.B,h)+ iHj(n,si ,h) cosB;t,
i=2

B; =|Imsi|, (1=234), (]=123),

Hj(n,si,h):2Nj(n,Si)/A(Si),'Yj(n,OL,B,h)=
=—(33jbp + B; /af+Dj /bf+Fj 1C¥) 1 ay,

A(S) =ays?(9s® + 7(ay +by +¢;)s* +5(asb; +

+a,¢, +byc;)s® +3aybycy), ap =b*h® /108,
a, =722 +6a?/h?, b, =p2(23 +6/h?),

¢, =38%/h% +a?22, Ny (n,s) = ag +a55° +
+ay5* +ag,8°%, (k=1 2), N3(n,s)=ags+

+ 80557 +8ysS”T + 3350 +ay38%, gy = 2hBbA2 x
x (1+b?)1+h?A2 —2h?\2 /3), 8, = P°b(B2 +
+2h22(B%(1+b?)(1+h*2 13) b2 (2p2 (1 +
+n 13)—h?A2(1-b?)?/6)))/h, ay; =p°bh((L+
+b?)(1+h?\2 /3) +h®A2(1+2b? —30%)/3))/ 2,

agy = p3bh3(1+6b% +b*)/24,a,, = 2p*%0? x
x (2b? +h?\2(21+b?) +13n%A2 /20 /3),

ag, =B*b2 (1+2b% +b*/5)/6, a;, = 28 x
x A2 (6b% + (2+b%(5+b?))h?A2 + (7120 +b? x
x (715+2b?))h*At) 13, ay, = 28%bh?A2 (b2 (1+

12

b2(10+b? /5)))h?)A2), ags = —2B1%4F 2+
+(19/3-bH)h*Ad 120+ 21—b? 13)h®A2), a5 =
— 282022+ (2+b2/3+b* 13)h%A2 + (23160 +
+3b2/10+2b* /15)h*A}), @y = B2+ (2+
+10b% /3+4b* /3)h?A2 +(7/12+19b% / 20 +
+8b*/15+p2b?(1+ 2b% +b* /5) /3)h*r1) /2,

as3 = P2 (1+2b2 +b*/5)/24, by =
=2ay3/8y, ag3 =P (h?(O*(1+b%/3)+(8b*/
/5+3b% +4/5)h*\2 /12) + (1+ 2b% +b* /5)B% x
xh?A3b?/3), |B;, Dj, Fj|(a.b,c) =

=B, D, F|[(by;. byj.bg;). B = (afa+c—ab)(c; —
—~by)/ Ag, D = (bfa+c—-bb)(a —c;)/ Ao,

F =(c2a+c—cb)(b —ay)/ Ay, Ag =al(c,—

—by) +bf (8 — ) +¢f (b - ), by =2y -
—agMy /8y, by =ay —agly/ag, by =ag, —
—agky /39, (k=1 2), by =agz—My(ag3—

— 3Ky [ ag, b3 =ay3 —aamy /a9 — 5 (833 —ay3 x
xkylag)/ag, b3 =83 —au3ly /8y —ky(ags —
—ay3/ag)/ag, ky =(ag +b +¢)ag, 1 =(ayby +
+ayC +biG)ag, My =ahycay, s =0,

s, =iay6/h% +22, 53 =iB/6/h% +22,

sy =iy3p/h2 + a2,

The exponentials in (8) were laid out in a
power series, which were deducted six first

members. Here Jg(t), J1(t) - Bessel
functions of the first kind of zero and first
order, respectively, and the function J,(t) is
defined as follows:

t
Jo(t) = [Jo(r)dr.
0
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It is easy to verify that when the thickness
of  the layer tends to infinity

hIim ¢;(h,n,t) =0, (i=1, 2, 3) functions ¢;
—>®©

are zero and equation (13) coincides with the
corresponding equity for the half-space
[18, 20, 24].

Using last relation, the mixed boundary
conditions (4) and (5) were satisfied. Forming
a series expansion in the Eigen functions and

equating coefficients of lie terms in COSA X,

an infinite system of \olterra integral
equations of the second kind was obtained:

V,, (t) + zamn(x )jv (t)F, (t—1)dt =
m=0
:Cn(x )VT (t)a (14)
where

|
o (X) = —2 [ cos . x cosh., xdx,
n x*

X |
Cn(x*)_ ¥ [ cosh,xdx, NZ = [ cos®2., xdx.
n 0 0

Transforming (7) and making use of (3),
(10) and (11), we rewrite the equations of
motion of the projectile in the form

dvr(t) _ 20
T 2 X (0 +
N Z—S'”XKX W v, (F,t- r)dr}
n=0 n (15)

NUMERICAL IMPLEMENTATION

The numerical implementation of the
governing system of equations (14), (15) is
based on a combination of the quadrature and
reduction methods. The integrals in Egs. (13)
— (15) are evaluated according to the Gregory
symmetrical quadrature  formula  for
equidistant fifth-order nodes [25]. The Cauchy
problem for the differential equation (15) is
solved by the fourth-order Adams method with

local truncation error O(At®) [25], where At

MIABOOHI TEXHONOTII e 05/2017, 8-15
MpomucnoBa Ta UMBINbHa iHXeHepis

is the length of the subintervals into which the
interval [0, T] is partitioned. The initial phase
of the solution is computed in steps of At/16.
The order of reduction N is chosen from
considerations of practical convergence. To
smooth the oscillations encountered in the
summation of finite number of terms of the
series and to offset the Gibbs phenomenon, an
averaging operation [22] was introduced,
which in the case of the sum of a finite number
of terms of a trigonometric series reduces to
term-by-term multiplication of terms of the
finite sum by the Lanczos multipliers

o, = (sin(ht/N))/(nmt/N), (n=0,N).
Setting the shear modulus p equal to zero,

we obtain as a special case the problem of the
impact of a shell on the surface of a fluid. An
aluminium layer was considered as an example

Vp=0.003, pun=0.3582K, h/R=0.02,
M =025, h=2, T=2 d=0.05 (Fig.1).
Figures 2 — 5 shows the results of the
calculations: normal stresses o,, (Fig.2) and
the normal displacements u, (Fig.3) at the

middle point of initial contact area, the
reaction of the layer P (Fig. 5), the penetration
rate V of the projectile into the medium of
layer (Fig.4).
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Fig. 2. The dependence of the normal stresses
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Fig. 3. The dependence of the normal displacement

13



MaTteMaTMKa Ta CTaTMCTHUKA

%
2,003 S

0.0E+00 . — e
\ T
W\ T T=a
2.0E03

-4.0E-03 T T T T T
3.13E-01 6.47E01 9.80E-01 1.31E+00 1.65E+00 t

Fig. 4. The dependence of the velocity
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Fig. 5. The dependence of the elastic layer reaction

Solid curve corresponds to the case of the
impact of hard cylinder with flat surface with
width 2d on the elastic layer (Case 1). For
comparison shown dash and dots curves which
represent the cases of the impact of hard
cylinder with flat surface d =0.05 on the
elastic half-space (Case 2) and hard cylinder
d=0 on the elastic layer (Case 3)
corresponding. The maximal normal stresses
G ,, arise in case of the impact of hard cylinder
on the elastic half-space. In Case 2 the normal
stresses are significantly less than in Cases 1
and 3 and in Case 3 on 30% higher than in
Case 1.

SUMMURY

Developed solution gives ability adequately
simulate an impact processes of the impact of
cylindrical flat body on the elastic layer
especially when initial contact area is strip.
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Yaap KecTKOro HUJINHIPA € MJIOCKHM
Cpe30M 1o YNpyromy cJioio

Bnaoucnae Bo2oarnos

AnHoraums. Hccnenyercss — HanpshKEHHO-
ne(OpMUPOBAaHHOE COCTOSIHUE YIIPYTOTO  CIIOA,
KOTOpBIN JeopMHUpYeTCs B pe3yibTare yaapa
J)KECTKOr0 UWIMHApPAa C IUJIOCKOW IUIOUIAJKOH.
HavanbHblil KOHTAKT MPOUCXOAUT MO MOBEPXHOCTH
IJIOCKOTO cpe3a. PaccMarpuBaercst KpaeBas 3aja4a
C IWHAMHYECKH W3MEHSIONIIEHCS 30HOW KOHTAaKTa.
Hcnons3yercs MOJIXO, KOTOPBII CBOJIUT
ypaBHEHUS NTWHAMHKU CHCTEMBI INTAMII-CIOH K
OCCKOHEUHOU CHUCTEME HMHTEIPaIbHBIX YpaBHEHUH
Bonsreppa BTOpOro pona. 3to AaeT BO3MOXHOCTh
3¢ (GEeKTUBHO TTPOBECTH YUCIEHHBIA aHATN3 3a/1a491
U JIOCTOBEPHO OMPEACIIUTh JUHAMUYECKHE KOJIH-
YECTBEHHBIE M KWHEMATHYECKUE XapaKTEPHUCTHKH,
OMUCHIBAIOIINE MPOLIECC ylapa B 3aBUCUMOCTH OT
Ha4YaJIbHOH CKOPOCTH yIAapHWKAa W  YIPYTUX
mapaMeTpPOB CIIOS.

KaroueBble cJjioBa: ynap, ynpyrui, Ciou,
IJIOCKAs 3a/1a4a, KeCTKUN UITHHIIP.
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