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In this paper vibration of fluid-saturated porous solids under the equal distribution load is studied
using two different approaches. One of them is analytical way. Biot’s equations in terms of displacement,
pore pressure, porosity and effective densities are used for one-dimensional column. Using boundary
conditions analytical expressions for parameters of stress-strain state: the solid and fluid displacements
and stresses are obtained. Another way is Boundary Integral Equation Method. Equilibrium equations for
3-D linear dynamic poroelasticity are presented. Also required components of fundamental solution
tensors as weighting displacement fields are obtained and analyzed with the help of the analogy between
poroelastisity and thermoelastisity. The solution of the porous solid vibration problem for two types of
boundary conditions is presented in the figures. Graphs present the comparison of the normalized solid
displacement u; at the top and normalized pressure o33 in elastic region and in porous solid of poroelastic
region depending on frequency o that are computed using Boundary Integral Equation and analytical
methods. Figures show that graphs of the displacements and pressure in poroelastic and elastic region
have the same character but different values. The numerical solution of this problem was calculated using
material properties which are corresponding to the Barea Sandstone. It shows that massive porous bodies
cannot be modeling as homogeneous elastic media but it is necessary to use two phase model and
equations of poroelasticity. Since the agreement between the BEM results and the analytical solution is
good so such an approach can be used for development and testing of numerical techniques for analyzing
of 3-D porous solids vibration.
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Introduction

Porous materials are very spread in nature that’s why they are widely used
in technique and construction. Planning of underground structures, elaborating
of fields by dynamic methods need knowledge of proceedings that are
occurring in the time of wave propagation in porous saturated media. Laws of
elastic theory can’t be used for studying of wave propagations in saturated
materials because of presence of filler changing the behavior of such materials.
As a result three different compressional waves, the longitudinal fast wave, the
second longitudinal slow wave, and the third transversal slow wave, are
occurring during elastic vibration in saturated media. That’s why we need
another theory for calculating of porosity [1], [2], [3].

1. Basic Relations
Consider the two phase model of the poroelastic body. Following Biot [4]
the system of differential equations for harmonic vibration is expressed as:
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where u; — the jth component of the displacement vector complex amplitude of
the porous body skeleton; 7 — stresses in the fluid related to the fluid pressure p
according to: ==-fp, where B is a porosity; ® — frequency; p* - the parameter,
that characterize inertial properties of media during vibration proceed and can

2 2 .
s - 2
be written as follows: p° = O (PuiPa2 = Pia) ¥ IOD(Py; +Prn ¥ 2P12) > P11> P225 P12

iwb+w’p,,
— mass densities, that are relating to each other as: py;+py=01-B)p,.

P12 +P2=Bp > P12 =—P,» Where: p;— the solid density, pr — the fluid density,
pa = c:P-p; — the density of connecting mass, c — the coefficient that depend on
the pores geometry and frequency of excitation.

Terms y* K, T]* can be written as follows:

« 0 iobto’p, . R 5 ( Qj ( J
Y =- s K =0 , N ==b| I+= [+io 3)
R iwb—w2p22 btiopy, n Pi2=Pn 7y

where b — a dissipation constant, O, R — elastic modulus’s of media that depend
on a porosity f and drained and undrained bulk modulus’s K, K,,.

Physical relations between stresses and strains in poroelasticity are
expressed as:

2
o, =(X+Q7j8ije+2ue +08,€, 1=0e+Re, 4)

where e = u;,; and € = w;; are the solid and fluid dilatation, respectively,
€;~=0.5(ux;+uy,) — the deformation in the solid, w; — the component of the fluid
displacement vector:

T, +(imb + m°p,, )y,
— ( p12) . (5)

iob—w’p,,

2. Integral Formulation and Boundary Integral Equation
The Boundary Integral Equation Method is used for solving of this
problem. According to J.Dominguez [5] equilibrium equations for 3-D linear

dynamic poroelasticity are written as:
cll; +J'T u, dr+jU4jvndr jUU ,dF+IT4JTdF

ij i

Wﬂ( S+ ULy, )dr j[rU +1Ty, Jdr,
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where j=1, 2,3 subscript indicates the jth set of the fundamental solution;
Cij =8ij for points inside the body €, ¢; =0 for points outside £,

¢ =0, 581]- for points on I where the boundary is smooth, I' — the boundary of

the body Q; t=1;n;, U,=U;n;, n; — the ith component of the unit normal n to
the boundary I'. The variables denotes by superscript (*) are those associated
with the weighting displacement fields (fundamental solutions).

The fundamental solutions matrix in equations (1), (2) using analogy with
thermoelasticity can be expressed as totality of four components:
— the solid displacement in & direction derived from the unit point force applied
to the solid following j direction:

N Sk iAz(@)r 3
U (7, )——/e——Z a, (0))[5ij0 (r,@,m)+r,; 7y Uz(r,w,m)] ,
m=1

7

ik (@)
Uy (r,0,m)=5——[ir,, (@)r-1],
r

1 A (@)1

U, (r,o,m)=5 [3 “3ik,, (0)r—A2 (0)r ]

where r — the distance between point at which displacement calculated and
force applied point,

lg_klz k12_7\412
o (0)=——F"F"F57, LO)=——F 5, GO)=——,
(@) 4mp @* (A3 -AY) 2 4mp @ (A3 -AP) 3(0) 4mp” o
* 2 * 2 . . * %
(@)=L 2 2(@)=—22 a2+l P i, ion'y

x+2 20 " A2

L)

2,2_P O 71(0

AMiha= A2 F
— the fluid stress derived from the unit point force applied to the solid
following £ direction:

Uy (r,0) =

ion’
4m(h5 = A+ 21)

— the solid displacement in j direction derived from the following body forces

sk I"[Uo(l",(,l),z)_Uo(l",O),l)];

" and X, applied to the fluid and solid, respectively

i i
X7 :[ -1 ] oy iob+m> P12 X,x
' dmr 7 —iwb+07pyy

Y
U.,(r,m)= LUy (r,o,D)-U,(r,m,2)];
./4(” ) 4%(}\,% _}\'12)(}\'4_2“) r J }"[ O(F ) O(F )]
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— the fluid stress derived from the body forces X/* and X, applied to the

l l
fluid and solid, respectively:

_ 1 2 12 iy (o) 2 2\ iM(w)r
Uy (r,0)=————| (A5—k 2897 (O =k ! .
44(r,®) 47t(7»§—7»12)|:( 5—ki e (A —ki e J

Using equation for stresses on the plane with unit normal »; :

0
lj =0un; =n (k”k,k +§1 +n; (ui,j +uj,l-),

and equation (5) for the fluid displacement one can obtain:
— the solid stresses on the plane with unit normal 7; derived from the unit

point force applied to the solid following £ direction:
0 ,
Ty (r,0)=n; [KU”(’,+EU4,( rum [ Uy +Up |o ko 1=1,2,3;

— the fluid normal displacement derived from the unit point force applied to the
solid following k direction:
Uy

on

>

(i0b=0py)U 1,

Ty (r,0)=
u(0) (io)b+032p22)

— the solid stresses on the plane with unit normal 7; derived from the body

forces X/* and X, applied to the fluid and solid, respectively:

1 l
T]4 (}",0)): n] [kUlk,l +%U44}+Mnl [U]4J +U]4,]]9

— the fluid normal displacement derived from the body forces X/* and X;

applied to the fluid and solid, respectively:

(i0)b—0)2p12)U/-4n/- _%_%&
5T 9n gqy? on
Ty (’"3(’)): ) 2

({0b+®7p,,)

3. Solving of the test problem

Consider the problem of harmonic vibration of the porous elastic layer
under the load equally distributed on its surface. In this case displacements u;,
uy, v, v, not occur but displacements u; and v; are the functions of the
coordinate x; [5]. Components of the stress state o;; and T depend only on the
coordinate x; as well. As a result the system of differential equations in partial
derivatives can be rewritten as the system of two usual differential equations:



ISSN 2410-2547. Onip matepiainis i Teopis cnopyx. 2017. Ne 99 197

2
du3

A+20) =24 p 0y -y L=, ©)
X2 dxy
3
2 1 *

d—;+%r+iom sy (7)

dxy ¥ dxy

The solution of the system (6)-(7) is given as:
uz(x3) = ue™s T(x3)= e, 8)
Substituting the solution (8) in the system (6)-(7) and reducing to &3 s

possible to obtain:

(@*/c? —k*)  —ikm (u):
{ —kcm (im/K*—kz)} )= ©)

where m=y"/(A+20), f =(A+2w)/p", 3 =u/p’ .
The nontrivial solution can be obtained only in following case:
2/ 2 12 .
Dot @ [e —k%) il =0
—kom  (io/x" —k?)

or
k*—zk*+¢=0, (10)
i, o i o
where z==C4+7-+imom, ¢ ="
e K ¢

Using roots of the biquadrate equation (10):

kfz =0,5{zi\/zz—4q} , (11)

the solution can be expressed as:
us(x3) = u1(+)eik‘x3 + ul(_)e_ik‘x3 + u§+)eik2x3 + ug_)e_ikzx3 ) (12)

Since the system of algebraic equations (6)-(7) is homogeneous then the
fluid stress t using expressions (8) may be written as:

1(x3) = X, [ul(+)eik‘x3 —u{ e J+ X, [u§+)eik2x3 —ufDeT % ] , (13)
1 (@ 2] .
where X, =—— =-—k7 |,i=1,2.
ikim | ¢

Equations for other parameters of stress-strain state of the porous elastic
layer can be written as:
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dus (x ) o
€33(x3) = %: ik [ul(+)e’k1x3 _”1( ) g~ihixs }_

+ik, [u§+)eik2x3 —uf e J ; (14)

033(x3) =(A+2p) d)é 3) %T 21[ (+)eik1x3_u1(—)e—iklx3]+

+Z, [u§+)eik2x3 —uf e ] , (15)

_ 01 [0 ;2 1.
where Z,—(?»+2].L)(zk += ky( k||, =12,

ks . N . s
dix3) = X, ik, |:u1(+)elk'x3 +u1( o3 }+X2ik2 [u§+)e’k2x3 +u§ ) thas ] ; (16)
3
1 . 2 dt(x;)
Us(x ):—{(zwb—w P13 — =
0 io)b+c02p22 TR dx
=, |:u1(+)eik1x3 +u1(—)e—ik1x3 J +Y, |:u1(+)eik2x3 +u1(—)e—ik2x3 J ’ (17)

where ¥, = ———| (iob—0p,,) -~ ‘”—f—k,? =12,
i0b+07°p,, m\ ¢

To obtain additional relations for u;"”, 1,”, u,™”, u,"”) following boundary

conditions are used:
1) u3(0)=0,

d1(0)

2) U5(0)=0, using equation (17), can obtain: I
3

:O’

3) o) =-hk,
4) ©()=0.
Taking into account equations (12), (13), (15), (17) after following
transformations one can obtain the system of linear algebraic equations:
u1(+) + u(_) + u(+) + u(_) =0,

Xk () +u) + Xk, SV +ulT) =0,

Z (u1(+)eik‘l - ul(_)e_lk‘ )+ Z, (ugr)eik2 - ug_)e_lw) =-h,
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Xl (u1(+)eikll _ul(—)e—ikll)+ Xz (u§+)eik2l _ug—)e—il@l) =0.
Using the solution of the system it’s possible to calculate values of other
parameters of stress-strain state.
The numerical solution of this problem was calculated using material
properties which are corresponding to the Barea Sandstone [5], [6]:

A=4-10° N/m®, p=6-10° N/m*, p=0.19, 0=1.399 N/m*>,  R=0.444 N/m’,

=2418 Kg/m’, p,, =340 Kg/m’, p;, = —150 Kg/m’, b=0.19-10° Ns/m".
P11 P22 12

Figure 1 shows comparing of normalized displacement u; at the top in
elastic region (the curve with designation 1) and in porous solid of poroelastic
region (the curve with designation 2) versus frequency for a range going from

B 2”(1_\/ ) Hok
0 to 5w, Whereicl)l:zl[\/Eu/P » E, 2(1_—2\,:); P =P tPn+2pp-

up
Rl ; :
15 t :
1
= o
1 it
P ;
05| < A% i "-
G ; "// i
“X&a‘:i—d\ <. i “h_-—a'/ 3
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Fig. 1. Normalized displacement u5 at the top versus frequency w107

Figure 2 presented comparing of normalized stresses o3; in elastic region
(the curve with designation 1) and in porous solid of poroelastic region (the
curve with designation 2) versus frequency for the same range:

Oss

0 2 4 6 ol

Fig. 2. Normalized stresses o33 versus frequency ©-107

Consider this layer under other boundary conditions:
D) u3(0)=U,,
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2) Us(0)=—mo’Uy(pi,+p) »

3) o3()=0.

4) ©(1)=0.

The system of linear algebraic equations is following:
u1(+) + ”1(_) + u§+) + ug_) =Uy,

. — . — 2

Xllkl(u1(+) +u1( ))+X21k2(u§+) +u§ )) =m® Uo(p12 +p22) ,
Zl (ul(+)eikll _ul(—)e—ikll)+ Z2 (u§+)eik2l _ué—)e—ikﬂ) =0,
Xl (ul(+)eikll _ul(—)e—ikll)+ X2 (u§+)eik2l —Z/Ig_)e_ik2l) =0.

Using the solution of the system it’s possible to calculate values of other
parameters of stress-strain state depending on frequency . Figures 3, 4 show
graphs of normalized displacement u; at the top and normalized stresses 633 in
elastic region (the curve with designation 1) and in porous solid of poroelastic
region (the curve with designation 2) versus frequency for a range going from
0 to S®; under other boundary conditions:

T 7]

e
0.5,% NN :

0 2 4 6 10’

Fig. 3. Normalized displacement 5 at the top versus frequency «-107

G33

Y
15
10 5 L A
5
0 ”/&'"2 B

Fig. 4. Normalized stresses o33 versus frequency ©-107

Points on figures present the BE results.
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Conclusion

1. Figures show that graphs of the displacements and stresses in elastic
region and in porous solid of poroelastic region have the same character but
different values depending on frequency ®. It means that massive porous
bodies can’t be modeling as homogeneous elastic media but it is necessary to
use the two phase model and equations of poroelasticity.

2. Since the agreement between the BE results and the analytical solution
is good so such an approach can be used for development and testing of
numerical techniques for analyzing of 3-D porous solids vibration.
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Kapa 1.]].
YUCEJBHE PO3B’SI3AHHS 3AJJAYI ITPO KOJIMBAHHS IOPOIIPY2KHOI'O
MACHUBY

MeTon TpaHMYHHX IHTErpaJbHUX PIBHSHb 3aCTOCOBYETHCS UL PO3B’SI3aHHS 3amadi Ipo
TPUBUMIPHI TapMOHIUHI KOJIMBAaHHS IIOPONPYXKHOrO MacHBHOro Tina. HaBemeHi oOCHOBHI
PO3paxyHKOBI CITIBBITHOIIECHHS Ta MPOAHANII30BaHO CKIIAX MAaTPHI (yHIaMEHTAIbHHX PO3B’S3KiB.
AHAJITHYHO Ta YHCENBHO PO3B’s3aHA TECTOBA 33jada PO 3MYIIECHI KOJUBAHHS MOPOIPYKHOTO
mapy.

KimiouoBi  ciaoBa:  mpompyxKHe — CepeloBHINEG, TpaHWYHI  IHTErpainbHi  PIiBHSHHS,
(yHIaMEHTaIBHUH PO3B 30K, 3SMYIIECH] KOJIUBAHHS IIapy.
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Kapa 1. J1.
YUCJEHHOE PEHIEHUE 3AJIAYN O KOJIEBAHUSAX ITOPOYIIPYTI'OI'O MACCHUBA
MeToi TpaHWYHBIX HHTETPAIbHBIX YPaBHCHHH MpPUMEHSCTCS I8 PEUICHHS 3a/a4d PO
TPEXMEPHbIC FAPMOHUYECKUE KOJICOAHUsSI TOPOYIPYroro MacCUBHOro Teja. [IprBeieHb OCHOBHBIC
pacueTHbIC COOTHONIICHHS M MPOAHAIN3HMPOBAHO COCTAB MATPHIBI (PYHIAMEHTAIbHBIX PEIICHHM.
AHaIUTHYECKH Ta YHCICHHO pEIIeHa TECTOBas 3ajaya Ipo BBIHYXKJCHHBIC KoJicOaHUs
HIOPOYIPYTOro CIIOSL.
KaroueBble cjoBa: [Opoyrnpyras cpeia, TpaHUYHbICE HHTErpalibHbIC — YpaBHEHHS,
(hyHIaMeHTaIbHOE pelICHHE, BBIHYX/ICHHBIC KOJICOaHUS CIIOSL.

YK 539.3

Kapa 1./[. YncenbHe po3B’si3aHHS 32124l MPO KOJIMBAHHS IOPONPY:KHOT0 MacuBy //
Omip MarepiauniB i Teopist criopya. — K.: KHYBA, 2017. — Bum. 99. — C. 193 —202.
Memoo epanuunux inmeepanbHux pieHAHb 3ACMOCOBYEMbCA O PO36 A3AHHA 3a0aHyi
npo MpUEUMIpPHI 2APMOHIYHI KOTUBAHHA NOPONPYIHCHO20 MACUBHO20 MINA.

Kara I.D. Numerical solution of the problem of porous solids vibration // Opir
materialiv i teoriia sporud (Strength of Materials and Theory of Structures). — K.:
KNUBA, 2017. — Issue. 99. — P. 193 — 202.

Boundary Integral Equation Method is applied for numerical solution of the porous
solids 3-D harmonic vibration problem.
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