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Abstract. The authors have considered the design of a three-span beam bridge of a given length
under live load. The purpose of this study is obtaining an equally strong system, in which the
maximum stresses in all elements are equal to the estimated ones. A few statically determinate and
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1. General

In his monograph [1], A.L. Vinogradov considered the problem of design
optimizing and showed that there is no optimal solution in the set of statically
indeterminate systems if the geometrical characteristics of the cross-sections of
the elements are taken as optimization arguments. The optimal system can be
obtained by neglecting under-stressed constraints and is in the set of statically
determinate systems.

In this article, the example of optimization of a three-span continuous beam
was used to show that an optimal solution can be an element of both statically
determinate and statically indeterminate sets if a displacement of support
fastenings is allowed.

As before, the optimal internal stress distribution in the system shall be
understood as such a set of internal stresses with which the system becomes
optimal, for example, a system of minimum volume or value [3, 8-17]. The
system is optimal if the maximum stresses are equal to the estimated ones in all
its elements, that is, if the system is equally strong. If the stress-strain state and
the cross-sections of all the elements are also the same, then the system of equal
strength is a system with equal stresses in the design sections.

In the set of statically determinate systems, the stresses are determined from
the static equilibrium equations ; their distribution under the given load depends
only on the linear dimensions of the elements and on their mutual arrangement
and does not depend on the displacement of the support fastenings.

In the set of statically indeterminate systems, the stresses are determined
from the equilibrium equations, as well as from the strain compatibility
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equations [4-7]. Their distribution depends on the dimensions of the structural
elements, as well as on the displacement of the support fastenings. Therefore, not
only the linear dimensions of the elements should be changed, but also the
support fastenings should be displaced to obtain an optimal system in a set of
statically indeterminate systems.

2. Problem statements

In this article, the optimization algorithm of the multi-span statically
determinate and indeterminate uniform section beams is generalized as compared
to [2] for the case of action of dead and live mobile loads and is also applicable
to the beams with displaced supports.

A continuous beam of the constant cross-section on the fixed supports is
accepted as the initial system (Fig. 1, a). The beam length / and the number of
support fastenings n are considered to be given.
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Fig. 1. Design solutions of optimal systems:
a) given continuous three-span beam; b) multi-span beam with hinge joints on the end spans; c)
multi-span beam with hinge joints in the middle span; d) beam with unilateral support fastenings;
¢) beam with displaced supports; f) beam with resilient connections

If the optimal solution is searched for in the set of statically determinate
systems, n—2 connections should be dropped by mounting the same number of
hinge joints (Fig. 1, b, ¢). In such case, distances from the hinge joints to the
support fastenings x; and span lengths z, are accepted as optimization
parameters. If the number of hinge joints (n—2) is even, then since the system
is symmetric, the number of parameters x; will be two times less, i.e. (n—2)/2.
If the number of hinge joints is uneven, the number of unknowns is (n—3)/2+1.

The number of optimization parameters z,

is accepted being (#—2) minus the
number of parameters ;.

If the optimal design is searched for in the set of statically indeterminate
systems, it is possible with one of three design solutions:

— a beam with unilateral support connections (Fig. 1, d);



126 ISSN 2410-2547
Omip MatepianiB i Teopis copyx/Strength of Materials and Theory of Structures. 2018. Ne 100

— a pre-tensioned system obtained by vertical displacement of the supports
(Fig. 1, e);
— a beam with resilient connections (Fig. 1, f).

In all above cases, the optimization parameters which effect the stress
distributions are span lengths z;. Moreover, depending in the choice of the
design solution as optimization parameters k; (coefficient k; determines the part
of distributed load k;q, at which the beam touches the supports, i.e. becomes
statically indeterminate); A;EJ (A, — support displacement) or ¢EJ (c¢;—
support yield) are chosen, respectively. The number of optimized parameters is
determined the same way as with the statically determinate constructions, while
the number k;, A;EJ or ¢;EJ is equal to number Xx;.

3. Design optimization of the three-span beam bridge
3.1 Problem statements. An optimal design of a three-span beam bridge of
the specified length / under dead load ¢ =const and live load p (Fig. 1, a)

shall be obtained. The beam cross-section is uniform and equal in all spans, the
arrangement is symmetrical.

3.2 Optimization conditions. Since the load-bearing elements are beams
with the uniform cross-section, they experience the same stress-strain states
under the load. Therefore, the optimal bridge design is equal-strength beams -
with equal maximum bending moments in the typical cross-sections: in the first
span, above the support and in the second span (Fig. 1, a).

There are three typical cross-sections with maximum moments, therefore two
optimality conditions should be provided, namely:

M =My (1)

\M =M. 2)
Optimality equations are compiled based on these conditions, there are two of
them for this problem. Solving these equations together, we determine the
optimal design parameters for different types of beams.
Since the number of the unknowns ¢, E£J, A,EJ and k; in this case is 1, we
omitindex i: cEJ, AEJ, k.
The formulas for defining moments in the typical cross-sections under the
combined action of dead and live loads are given below.

sup

4. Optimization of a multi-span statically determinate beam

4.1 Multi-span beam with hinge joints in the end spans (Fig. 1,b)

After making the storey plan of the multi-span beam, we obtain the values of
the moments in the typical sections from dead load ¢ [2].

Based on the analysis of the influence line of the bending moment, we
conclude on the location of the unfavorable load case with the live load (Fig. 2).

Thus, having accepted that the live load intensity p is equal in all parts, we

obtain the expressions as follows for the moments in the typical cross-sections:

(q+p)x°
Mlmax = T s (3)
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Msupz (q p)21( 1)’ (4)
z(zy—x 1-2z))*

M2max :_LI%‘F(C]‘F}?)% . (5)

Form (1), we obtain the expression for x :
x=2z,2-1). (6)
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Fig. 2. Multi-span beam with the hinge joints on the end spans (a) and
unfavorable load cases for M, (b), M

ap (c) and M, (d), where M_,, support moment

Parameter z; is numerically defined by iterate over the values with increment
0f 0.001, until the condition is fulfilled (2).

4.2 Multi-span beam with hinge joints in the middle span (Fig. 1,¢)

After making the storey plan of the multi-span beam, we obtain the values of
the moments in the typical sections from dead load ¢ [2].

Based on the analysis of the influence line of the bending moment, we
conclude on the location of the unfavorable load case of the mobile load (Fig. 3).
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Fig. 3. Multi-span beam with the hinge joints on the end spans (a) and
unfavorable load cases for M, (b), M
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(c)u M, (d), where Py, support load
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Thus, having accepted that the live load intensity p is equal in all parts, we

obtain:

2

Mlmax = Rl max (P+q) 2 (7)
Rlzi(zlz_xz_zzx)+&: max — Rl > Z2:l_2(x+zl)’
2z, 2 p+q

(g+p)x(z; —x)

My, 2_“’%, (8)
22

MZmax =(C]+p)?2 (9)

From (2), we obtain the expression for x :

{fl (1-2z,). (10)

Parameter z; is numerically defined by iterate over the values with
increment of 0.001, until the condition is fulfilled (1).

5. Optimization of the continuous beam

We will show the algorithm for determining stresses using the continuous
three-span bean (Fig. 4 (a)). Since the beam will be loaded with dead and live
mobile loads, stresses will be determined using the influence lines. We will
choose the main system by inserting the hinge joints in the middle sections above
the supports (Fig. 4 (b)). We accept moments at support as redundancies.
Isolated and load stress diagrams of the bending moments in the main system
which are required to determine the coefficients of the system of fundamental
equations, are shown in Fig.4,(c—g).

The unknown values X, X, under the live load are defined from the system

of fundamental equations

X108+ X8, +8 =0 (11
X1815 + X385 +8, =0
and are
8,6, —9,,0 8,0, —9,,0
(=00 Z000r -y O 2F ~ 0101 (12)

81, =87 8%, ~ 81
Coefficients of the system of fundamental equations at the unknowns for all
spans are equal and determined by the formulas

M} 2-z)

= = 1
Ou =)= "¢ (13)
M M -2z
812 = 821 = 2 d = 6EJ1 . (14)

In case of a symmetrical beam 9,, = 811 .
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Fig. 4. Continuous beam (a); main system (b); isolated (c, d) and load (e, f, g)
u

stress diagrams in the main systems; influence line M, , M, in cross-sections u,, u, (h, i)

Free terms of the system are written for each span:

— on the first span

—on the second span

81F(1) =

MM, du:”lzf(l_uf)

EJ 6EJ
M, .M
Syr() = —lgj 2du=0;

>

MopMy (=)@ —w)( = 22)”

>

81F(2) =

82F(2) =

EJ

6LJ

MypM, g 2t —ul)1-22)*

EJ

6EJ

(15)

(16)

(17)

(18)
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— on the third span

MM
Bire =] 315/ Hdu =0, (19)
M, .M 1—u)(2—uy)z>
82r(3) = 3£J : d”:ul( u%)éJ )i (20)

When we solve the system of fundamental equations (11) in each cross-
section u, in accordance to (12) we plot the influence lines X, X, . For this
purpose, during the numerical solution we divide each span into the given
number of equal intervals, and accept points # on the limits of ranges.

Ordinates of the influence lines of the moments in the cross-section u are
determined using the formulas

IL My, = M{™ + My@w)IL X, + Myw)IL X, , Q1)
LM, = M3 + M\(w)IL X, + M,u)IL X,, (22)

where M[™, M;™ — influence lines of the bending moment in the main system
on the 1% and 2™ spans, accordingly (Fig. 4 (h),(i)).

5.1 Continuous beam with unilateral support connections (Fig. 1,d)
Expressions for the moments in the typical cross-sections loaded with dead
load, according to [2], are:
3 2 3 3 2, 2 3
M, - l:xk(l 2z =) | w6l + 6z —2) 2

X1y, 0<x<z,0
4z, (31-4z) 4z,(31-4z)) 219’0 ¥<a. @

_—(1-2z)) =5 + (P =21z +2))k

Msup 4(3[_421) q > (24)
IV 2P =20z + 2k + 1P — 417z, + 4z} - 22, 29)
2max = 831 -4z £

Based on the analysis of the influence line of the bending moment, we
conclude on the location of the unfavorable load case with the live load (Fig. 5).
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Fig. 5. Unfavorable load case for M, (a), M, (b), M, (o),

where p_ - symmetrical load; p, -asymmetrical load
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We suppose that the live load p is equal in all parts, thus, p:

Py=D5 = Pus=P-
We obtain the unknown moments X, X, (Fig. 4 (b)) at the live load from

the fundamental equations (11), (12). The coefficients at the unknowns are
determined in accordance with (13), (14).
We take as free terms:
3
3 max max pZ
—to determine M, 8, =8, = & =87 = 241:1J .
Using the obtained values X; and expressions for M, from dead load, we

obtain [2]

(P =2z} +2)) k=1 +6° 2,61z - 2} |q+32 (21-32) p

Mlmax = 421 (31_421) Xmax ~
2
~(q+p)7 26)
[P =202+ 2)) k= + 612 =61 - 2} g +32] (21 =32) p
Xpax = 5
" 42,314z )(q +p)
—to determine M, 8, =87y =ﬁ[(l-221)3 +Z13]§
_2z)
b, = A3y = 222)
24EJ

Using the obtained values X, and expressions for M, from dead load, we
obtain [2]
1 (=22 +2) ~(IP =21z +2] )k [ q+] 11-22))° =25} (2= D) p |

M 41(3/-4z)) > 27)

: 1-2z)°
— to determine M, 8, =8,y = Oip™ = 53 = %

Using the obtained values X; and expressions for M, .. from dead load, we
obtain [2]

(207 ~21z} + 2 ) k4 1P ~41 2, + 4127 =22} |q+1(17 ~ 41z +427) p

M =
2max 8(31-4z,)

28)

Parameters z;, k are numerically defined by iterate over the values with

increment of 0.001 and 0.0001, respectively, until the conditions are fulfilled (1), (2).

5.2 Continuous beam with the displaced supports (Fig. 1,¢)

First, let us calculate support displacement of the beam under only dead load
(Fig. 6 (a)), for instance, using the area-moment method. Fig. 6 (c), (d) shows
isolated and load stress diagrams in the main system (Fig. 6 (b)), which are
required for calculation.

Thus,



132 ISSN 2410-2547
Omip MatepianiB i Teopis copyx/Strength of Materials and Theory of Structures. 2018. Ne 100

_13_21212+213 AEJT

Va5 Gl-4z) 1TV 2314z

P +61%z —12Izk + 77 AEJ
= 2
M (@) 40314z, 1+6 G124z 29)
uz, (I —uz

M, (q) =T 1(2 D xu, (30)

13—412214-41212—2213 AEJ
= . 1
Moma (@) 83I—4z) 410 @i—az) G

P .
a)i¢¢¢¢¢¢¢\L\L¢¢¢¢¢¢¢¢¢¢¢¢¢JL

-t - ;
2z 0,770 -2z 0,770 2 ‘

ez uy(1-22) U3z
o 141 ) ,(Xl ) 4 X,
7 7 2 7
[ X, =1 1-u
©) ! YM 2
7 A7
el |
223 X, =1 1—-uy .
d) T | | ol / [T M
? 77
~ |
e) M
2 2
8 8
9z / q 1—221)2/8 9% /
+
ﬂ I L1 L Mlmax
uz
: sl
\I\//
h) /ﬁ/@ - IL M ax

Fig. 6. Beam with the displaced supports (a); main system (b);
isolated (c, d) and stress diagrams (e) in the main system;
influence lines of the moments in the typical points (f— h)

Let us plot in accordance with (21), (22) using Fig. 4 (¢) — and influence lines
X,, X, without taking into account the support displacement. After we load

them according to Fig. 7 (f — h), we can find the moments in the typical points
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from the live load without taking into account the support displacement (we
accept that the live load intensity p is equal in all parts):

21 1
My, (p)= [ p(ILM,,)du+ [ p(ILM,,)du, (32)
uz [z
wz vizy - u2(1—2zl) V2(1—221)1 U3z, V32

T T
U332 |
|

Msp

]

Fig. 7. Beam on the resilient supports (a); main system (b);
isolated (c, d) and load (e, f, g) stress diagrams in the main system

I-z,

Myp(p)= [ P(IL X )du, (33)
0

I-z
MZmax(p):2 JP(IL MZ,u)du' (34)
Z
If we add the values of the moments which occur only from the support
displacement, we obtain

6AEJu

(35
z(31-4z) (9)

z) /
M,,(p)= _[P([L Ml,u)d”+ _[P(IL Ml,u)d”+

Uz, l-z,
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Iz,

6AEJ
Mg (p) = Z').P(ILXJd”“L21(3[_421): (36)
l-z;
6AEJ
MZmax(p) =2 JP(ILMZ,u)du+M (37)

2
Using the formulas (29) — (31), (35) — (37), we can find the maximum values

of moments M, , M, under the combined action of dead and live loads:

M2max :M2max(Q)+M2max(p)’ (38)
Msup = Msup (q) +Msup (p) ’ (39)
quz, (I —uz,) 6AEJu
= s —OALJU | (4
Mlmax 012,221( 2 Xluzl+Ml,u (p)+21(3l_421) ( 0)

Parameters z,, dEJ are numerically defined by iterate over the values with
increment of 0.001 and 0.0001, respectively, until the conditions are fulfilled (1), (2).

5.3 Continuous beam on the resilient supports (Fig. 1,1)

Analytical determination of the values of the maximum moments under the
combined action of dead and live loads is difficult, so the loads are considered
separately.

Under the action of dead load according to [2]

xX,
M) =S+ EED o, (@)

where
(=22 +z) —12¢cEJ(I-2)/ 7 q
: 3—dz +6cE] | 22 1 (1-2z2)° 4’
Mg (9) = X1, (42)

q(-2z)’

M2max (q) = Xl +T1

Under action of the live load, the values of moments in the typical points are

numerically determined; for this purpose the respective influence lines are plotted
and loaded (Fig. 7). We accept that the live load intensity p is equal in all parts.

(43)

The unknown values X, X, under the live load are determined from the

system of fundamental equations (11) using the formulas (12), where coefficients
at the unknowns for all spans are equal and are determined in accordance with
(13), (14) taking into account the support yield (Fig. 7):

I
8, =85, =8, + 3 R, 6EJ[2(1 zl)+6cEJ%1 (44)
2(1—21)2} 45)
7(I-2z)

Free terms of the system are written for each span. Taking into account the
support yield according to (15) — (20), we obtain (Fig. 7):

L =85,=8,+Y R 6EJ{(1 2z)—6¢cEJ
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— on the first span

z =1
8iey =81y + D Ric; = 1= u?)+ 6cE] —-—— 46
ey = S1ry + 2 Ric 6EJ|:ZI( R z,(1- 221)} (46)
B _ 1 cEJu
82ty =Borqy + 2 Ric; = EJ -2z “47)
— on the second span
81e2) =01p 2+ X Rici = uy (1=, )(2—u, )(I-22)) ? ey 200D (43)
1e(2) =017 (2) i€ 6EJ 2V 2 ! 7(1-2z) |’
3 =% +Y R, = wy (1= 2 )1 = 22,)% + 6¢EJ —1 12 | (49
2¢(2) = O2F(2) 2 iCi 6EJ|: 2( 2)( Zl) 1(1 2z 1):| ( )
— on the third span
B 1 cEJ(1-uy)
Sie3) =Oips) + L RiC = TEJ 1-2z ° (50)
1-u, [-z
Srccr =80 + R = g -7 e =2 s

When we solve the system of the fundamental equations in each cross-section
u, we plot according to (12) taking into account the support yield of the
influence lines X, X, (Fig. 8 (b),(c)):

TISIC _6162626 6161626 _8162816

— = X, =— (52)
@) -7 7 (6,) (5,

Ordinates of the influence lines of the moments in the cross-section ¥ of the
beam on the resilient supports are defined in accordance with (21), (22) and

Fig. 8 (d), (e).
The values of the moment M, . and the support bending moment from the

1:

live load are determined by the unfavorable load cases of the influence lines X
(on the negative parts of the influence line X)) and M, , (on the positive parts
of the influence line M, ), while the value M, . is reached in the middle of
the beam due to the symmetry (Fig. 8 (b), (€)):

ui'zy

My (p) = Jp (I X, du + Jp (IL X, )du, (53)
zZ U5z,
12
Mo () =2 [ p(IL My, M. (54)
ulz,

The points of intersection of the influence lines with the axis
Uz, U5z, , ulzz1 and further u1122 (Fig. 8) are numerically defined.

Using the formulas (42), (43), (53), (54), we can find the maximum values of
moments Mg, M, . under the combined action of dead and live loads:

M2max :M2max(q)+M2max(p)’ (56)

sup ?



136 ISSN 2410-2547
Omip MatepianiB i Teopis copyx/Strength of Materials and Theory of Structures. 2018. Ne 100

Msup :Msup(q)+Msup(p)' (56)
e ‘ A
c
zy zy=1-2z Z1
b) ‘ ‘ ’ ‘ IL X,
ulle
Y

Z + M;ZZ
) ILX,
d) ) L My

z) +u1122 J/
o ‘ \|j\\ IL M3 ax
=)
Uz
051

Fig. 8. Diagram of the beam (a); influence lines X, X, (b, c)and M M, . (e

Imax

M| ax 1S the maximum value of the total moment under the combined action
of dead and live loads. Moment M, , under action of dead load is determined

using the formula (41) and is

My (@ =, + 00 (57)
Under action of the live load (Fig. 8, d)
zi+UyZ,
My (p)= [plLs,, Jdu. (58)
Thus, ’
Mlmax = Oll}dagil [MXI + qu2“(21_“)-’_M1,u (p)J : (59)

Parameters z;, cEJ are numerically defined by iterate over the values with
increment of 0.001 and 0.0001, respectively, until the conditions are fulfilled (1), (2).

The results of optimization of all beam types are summarized in Table 1 (in
case of calculations without limitation of communality, single load density was
accepted as g=p=1kN/m).
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Table 1
cEJ,
nt;
9 ;
3 System type z,m| x,m| AEJ, Moy ‘Msupﬂ M na
= KNm? kNm KNm | KNm
ok
Statically Hinge joints in
determinate the end spans 11351 | 9404 11.054 | 11.050 | 11.054
three-span  Finoeomis
ge jomnts in the
beam middle span 11352 | 1947 11.058 | 11.049 | 11.049
With unilateral k
q support 11.369 10.994 | 10.996 | 10.989
connections 0.0271
Continuous | With displaced AEJ
11.351 11.053 | 11.053 | 11.052
beam supports 495
With resilient cEJ
connections 11.351 40,151 11.053 | 11.052 | 11.052
Statically Hinge joints in
p dtfntz;mnate the ond 11.942 | 9.896 24483 | 24433 | 24483
~Span - 'Hinge joints in the
beam middle span 11.005 | 2.049 24470 | 24465 | 24465
With unilateral k
support 11410 25750 | 25.749 | 25.814
Continuous | With displaced AEJ
beam supports 11444 403 25732 | 25726 | 25727
With resilient cEJ
connections 11.351 2050 24.835 | 24.776 | 24.709

6. Conclusions

1. It has been shown that an optimal solution exists in the set of statically
indeterminate systems under the action of dead load.

2. An optimal design can be part of the set of both statistically determinate,
and indeterminate systems.

3. The optimal solution can be designed in the form of various options. The
technical issues of making structures require further investigation to select the
final version.

4. Under the action of dead and live mobile loads, the estimated stresses in
different variants differ insignificantly.
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FO.I1. Kimos, M.A. Bepegiuesa, I".JI. Bamyna, C.B. [lepuzemns
KOHCTPYKTHUBHI PILNEHHSI OITUMAJBHUX CUCTEM IIJ AI€X0 IOCTIHHOIO
I TUMYACOBOT O PYXOMOI'O HABAHTAXKEHHS

ABTOpamH CTaTTi Oyna pO3risSHYTa KOHCTPYKIsl TPUIIPOrOHOBOrO OAJOYHOrO0 MOCTa 3aJaHoi
JIOBXKMHHM MiJ €0 THMYacCOBOTO HABaHTAXXCHHA. METOI JaHOro MOCIHIDKCHHS € OTPUMAaHHS
PIBHOMIIIHOT ~CHCTeMH, B yCIX €JIEMEHTaX $KOi MaKCHMallbHi HAaNpYyXEHHsS JOPiBHIOIOThH
pO3paxyHKOBUM. Byio IOBeJEHO, LI0 ONTUMAJIbHI PIlICHHS iCHYIOTh SIK Y MHOXHHI CTaTHYHO
BH3HAYCHUX CHCTEM, TaK i CTATHYHO HEBU3HAYCHHX.

KiarouoBi cioBa: craiesanizo0eroHHa 0alka, THMYacOBE HABAHTAXKEHHS, IIOCTIMHE
HaBaHTAXXCHHS, 0aJOYHMI MiCT, PIBHOMII[HA CHCTEMa, OITHMI3allis KOHCTPYKIIi.

FO.I1. Kumos, M.A. Bepesuuesa, I".JI. Bamyns, C.B. [epuzemas
KOHCTPYKTHUBHBIE PEIHEHUSI ONTUMAJBHBIX CUCTEM
IIPU JENCTBUU NOCTOSIHHON U BPEMEHHOM MOJABUKHOM HATPY30K
ABTOpaMI/I CTaTbH 6I>IJ1a paccMOTp€Ha KOHCTPYKOUSA TPEXIPOJIETHOIO 6aJ'IO‘IHOI‘O MOCTa
SHHaHHOﬁ JUIMHBI 11O BOSHeﬁCTBHeM BpeMeHHOfI HarpysKku. HCJ'H)IO JAHHOT' O HCCJICAOBaHUS ABJIACTCS
TIOJTYy9€HUE paBHOHpO‘{HOﬁ CUCTEMBI, BO BCEX DJICMCHTaX KOTOpOﬁ MaKCHUMAJIbHBIE HAIPSKCHUA
PaBHbI PACUYCTHBIM. IIJ'IS[ BI)I60pa ONTUMAJIBHOA CHCTEMBI 6I>IH PaccCMOTpEH psaa CTaTHYECKU
ONpPEeACIUMBIX U CTATUICCKU HEOIIPENCIIUMBIX CHCTEM. Breuto J0Ka3aHoO, YTO OIITUMAJIBHBIE PEIICHUSA
CYHECTBYIOT KaK B MHOJKECTBE CTATHYECKU OIPENCIIMMBIX CUCTEM, TaK U HEOIPEACIIMMBIX.
KiaroueBble cioBa: CTaJ'Ie)KeJ'IeSO6CTOHHa$[ 6am<a, BpEMEHHAas Harpyska, IOCTOsAHHAsI Harpyska,
63J]0‘1HLII‘/’I MOCT, paBHOIIpOYHAsA CUCTEMA, OIITUMHU3AIUS KOHCTPYKIIUH.
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