Вип. 96

Постійний URI для цього зібранняhttps://repositary.knuba.edu.ua/handle/987654321/5964

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Документ
    Моделирование точечного ряда, принадлежащего пространственной монотонной кривой
    (КНУБА, 2019) Гавриленко, Е. А.; Найдыш, А. В.; Холодняк, Ю. В.; Лебедев, В. А.
    Формирование одномерных обводов по заданным условиям - одна из наиболее востребованных задач геометрического моделирования. Задача решается вариативным дискретным геометрическим моделированием, которое предполагает формирование для исходного ряда промежуточных точек сгущения. Дискретная модель кривой состоит из точечного ряда, заданных геометрических характеристик и алгоритма сгущения. Дискретно представленная кривая (ДПК) формируется сгущением исходного точечного ряда произвольной конфигурации по участкам, на которых возможно обеспечить монотонное изменение значений ее характеристик. Монотонные участки стыкуются в особых точках. Каждые три последовательные точки ДПК определяют прилегающую плоскость. Четыре прилегающие плоскости, проходящие через две последовательные точки, ограничивают тетраэдр. Цепочка последовательных тетраэдров, определенных на всех участках, является областью расположения гладкой кривой линии постоянного хода, интерполирующей исходный точечный ряд. Кручение на участках ДПК оценивается величиной отношения угла между соседними прилегающими плоскостями к длине соответствующей хорды сопровождающей ломаной линии. Точка сгущения назначается внутри тетраэдра расположения ДПК. В результате последовательных сгущений получим непрерывный обвод постоянного хода, в каждой точке которого существует единственное положение основного трёхгранника. Точка сгущения назначается таким образом, чтобы значения кручения в точках ДПК изменялись монотонно. Это обеспечивает регулярность значений кручения в точках обвода. Наложение на формируемую ДПК дополнительных условий требует определения соответствующей области возможного решения внутри тетраэдра расположения ДПК.