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The paper outlines the fundamentals of the method of solving static problems of geometrically
nonlinear deformation, buckling, and postbuckling behavior of thin thermoelastic inhomogeneous
shells with complex-shaped mid-surface, geometrical features throughout the thickness, and
multilayer structure under complex thermomechanical loading. The method is based on the
geometrically nonlinear equations of three-dimensional thermoelasticity and the moment finite-
element scheme. The method is justified numerically. Comparing solutions with those obtained by
other authors and by software LIRA and SCAD is conducted.
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Introduction

The trends in the development of structural engineering and the design of
thin-walled shell structures call for refined numerical methods for the analysis
of the nonlinear deformation and buckling of various shells. Real shell
structures are made inhomogeneous (smoothly-variable and stepwise-varying
thickness, knees, ribs, cover plates, holes, cavities, channels, facets, layers) to
enhance reliability and reduce materials consumption. Thermal fields may
cause substantial strains and affect the mode of and time to buckling.

The present paper outlines a method for and results of solving static
problems of nonlinear deformation and buckling of various shells subject to
mechanical and thermal loads, because of uniform methodological positions of
the 3-d geometrically nonlinear theory of thermoelasticity and the finite-
element method (FEM) [4-12, 32, 50-55, 60-64].

The  stability of shells is addressed in many studies
[1, 14,17, 19, 22, 24, 25, 31], where various assumptions are made to simplify
problem solving. A few studies are concerned with the thermal stability of
shells of simple geometry [2, 15, 16, 19, 22,42, 46]. The three-dimensional
approach to the study of shells is addressed in the monographs [20, 28, 37, 47],
papers [29, 34, 36], and reports [33, 38, 39], which have recently increased in
number. The three-dimensional nonlinear deformation and buckling of
inhomogeneous shells were studied in a few publications [9, 36, 37]. In the
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FEM, this approach involves creation of design models based on universal
spatial finite elements (FEs) [13, 29, 36, 37, 39, 52, 60-64].

1. Problem Formulation

1.1. Basic Principles and Hypothesis. We will solve static problems of the
stress—strain state (SSS), buckling, and postbuckling behavior of a wide class
of thin inhomogeneous shells subject to external mechanical loads and
nonuniform bulk heating. The SSS of a shell and its structural elements at all
stages of loading in both prebuckling and postbuckling domains is determined
using the geometrically nonlinear equations of the three-dimensional theory of
thermoelasticity and taking into account all nonlinear terms and all the
components of the strain and stress tensors. By the inhomogeneity of a shell is
meant that (i) its thickness is continuously or stepwise variable and (ii) it
consists of combinations of multilayer stacks along the thickness and in plan.
The casing of the shell and the ribs reinforcing it can consist of an arbitrary
number of layers of varying thickness bonded into a single piece. Each layer
can be anisotropic and different from the others. Thus, thin multilayer shells of
variable thickness and complex geometry are considered as three-dimensional
bodies that can be reinforced with ribs and cover plates, weakened by cavities,
channels, and holes, and have sharp bends in the mid-surface (Fig. 1).

Shell sections with stepwise-variable thickness

Casing with constant thickness

Casing with Cover plate

stepwise-variable

Casing with smoothly-variable
thickness

Hole thickness

Ribs

Fig. 1

The SSS of the shell is represented in a local curvilinear coordinate system
x" with basis ¢ = 8}7/ ox' and a global Cartesian coordinate system x’ with

basis &, = oF/ox* (Fig. 2) [61, 64].
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Fig.2

The nonlinear deformation of shells is analyzed using the incremental
method based on the general Lagrangian formulation where the trajectories of
the strain and stress vectors are constructed using the increments of finite
strains and stresses in the basis of the Lagrangian (reference) coordinate system
[61, 64].

Two hypotheses are used to describe the SSS of a thin inhomogeneous
shell.

The nonclassical kinematic hypothesis of deformed straight line: though
stretched or shortened during deformation, a straight segment along the
thickness remains straight. This segment is not necessarily normal to the mid-
surface of the shell. The displacements are assumed distributed linearly along
the thickness, which is conventional in the theory of thin shells [41]. The layers
are bonded into a single piece so that there is no slippage and separation
between them and the components of the displacement vector are equal at the
interfaces. With certain restrictions on the material properties of the layers, this
assumption leads to quite accurate solutions of the problems of buckling and
vibration of thin multilayer shells [13, 45]. The hypothesis allows us to join
spatial FEs keeping compatibility of the coordinates and displacements and to
naturally model sharp bends, inclined walls of ribs, cavities, and holes.

The static hypothesis compressive assumes that the stresses 5!! in the
n

fibers of the nth layer are constant throughout the thickness (along the x!'-
axis):
pysy

a';‘ =0. (1.1)
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Consider a steady-state thermal process, in which the temperature field in
the shell is a known function of coordinates, T=T(x"), independent of the SSS

[61,64]. Since the shell is thin, the temperature may be considered linearly
distributed throughout the thickness of the layer. The effect of the mechanical
and thermal fields on the shell is represented as a single process of loading
described by a relationship between the general load parameter and the
parameters of mechanical and temperature fields. The shell is modeled by a
nonlinear elastic continuum subject to large displacements and small strains
whose components are linear functions of stresses. The layers of the shell are
considered linear elastic and described by the generalized Duhamel-Neumann
law [40]

o =Cc™ ;,k[=Ci7k1(8k,—gkl):Ci/kl(ak,—ak,T)=6i/—cTs v, (1.2)
sl.,.=%(C§'au"'/axf+c§"au’"/axf)+%(au"'/ax")~(au"'/ax-f), (1.3)

where & ., 1s the tensor of elastic strains related to internal stresses o’ gy is
. T
the tensor of finite (total) Cauchy—Green strains; & o 18 the tensor of thermal

strains induced by a change in the initial temperature 7;, by T'; s/=C i/klsk,

. T . os
are stresses dependent on total strains; ¢/ =CH

ikl

oy, T are stresses dependent on

thermal strains; CY* are the components of the stiffness tensor; o, are the

components of the tensor of thermal-expansion coefficients; C} = ox"' / ox' are

the components of the coordinate transformation tensor; and u*  are the
displacements in the Cartesian coordinate system.

The anisotropic inhomogeneous material of the shell is modeled by
isotropic, transversely isotropic, and orthotropic materials of its layers [51,64].

1.2. The Universal Spatial FE and its Parameters. To develop a finite-
element shell model (FESM), we approximate a thin shell by one spatial FE
throughout the thickness, which is an efficient approach [13,20,28,36,37,39,48,
52,61,64]. The structural elements of an inhomogeneous shell require that the
FE be universal: it should be eccentrically arranged relative to the mid-surfaces
of the casing, it should be possible to vary the thickness of the lateral edges of
the FE; the lateral edges of the neighboring FEs should be in continuous
contact; and it should be possible to model sharp bends in and the multilayer
structure of the shell.

The universal FE (Fig. 3) is based on an isoparametric spatial FE with
polylinear shape functions for coordinates and displacements [52, 61, 64].
Additional variable parameters are introduced to enhance the capabilities of the
modified FE. According to its constant and variable topological, geometrical,



ISSN 0132-1471. Onip matepiaxnis i Teopis cnopyx. 2014. Ne 92 125

and mechanical parameters, the FE is three-dimensional and has 8 nodes, 6
faces, and 12 edges with set material constants of homogeneous layers, mesh

(s, ), local (x*), and Cartesian (x") coordinates of nodes (Fig. 3,a,b).
k
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Fig. 3

The geometry of the FESM is set in two stages: (i) the Cartesian
coordinates of the nodes on the bounding surfaces of the FE of the casing (SFE
is a hexahedron ABCDEFGH , Fig. 4) are set; (ii) on sections with stepwise-

variable thickness, the nodal coordinates of the SFE along the x'-axis are
replaced by the nodal coordinates of the modified FE (MFE is a hexahedron
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ABCDEFGH ). The SFE is transformed into MFE by replacing the edges of
the SFE (4B, CD , EF ,GH ) by the edges of the MFE ( AB ,CD , EF ,GH ).

By varying the additional parameters, the modified spatial FE is endowed
with the properties of a universal FE, which allows unified modeling of a wide
class of inhomogeneous shell structures. The idea of transforming a SFE into a
MFE may be used as an example for the creation of other universal FEs.

1
o- SFE nodes x ¥
eo- MFE nodes

Fig. 4

1.3. The Moment Finite-Element Scheme at the Problems of
Thermoelastic Deformation of Inhomogeneous Shells. To derive the
governing finite-element equations for displacements, use is made of the
moment finite-element scheme (MFES) developed and theoretically proved by
Sakharov [37,49]. The MFES is applied to thin multilayer shells of stepwise-
variable thickness undergoing geometrically nonlinear deformation under
thermomechanical loads [8, 9, 11, 32, 55, 61, 64]. The MFES approximations
of displacements and strains guarantee a correct description of the rigid-body
displacements of FEs, which enhances the convergence and accuracy of
solutions on coarse meshes.

The MFES represents the total strains (1.3) as truncated Maclaurin series
about the FE center. So strains are defined within a FE as linear functions of

x'. Those terms that can be exactly calculated in the case of polylinear
displacements are retained in the series.

The thermal strains & ., which depend on both temperature and material

ij>
properties of the layer, are assumed to be linear functions of the coordinates
x* and x* within a FE and in stepwise-linear functions of the coordinate x'
[9, 11, 61, 64]. They are expanded into a Taylor series about the center of the
nth layer.
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Stresses are represented as linear parts of a Taylor series in powers of local
coordinates x' about the center of the nth layer.

2. FEM Equations for Elastic Inhomogeneous Shells Undergoing

Geometrically Nonlinear Deformation

2.1. FEM Equations for Thin Inhomogeneous Shells. The nonlinear
deformation of a shell is considered as a sequence of equilibrium states during
steps of loading. The history of the SSS and the geometry of the shell are
assumed known at the current step of loading. The equilibrium state of the
FESM is determined based on the virtual-displacement principle and the
Lagrange equation

SIT=Y" (W, =84, )=0, (2.1
FE

here I7 is the strain energy of the FESM; W, and A4, are the works done by

internal and external forces of a FE; Z is the sum over finite elements of the
FE

FESM.
With (1.2), the virtual work of internal forces is given by

W= [ o 8(ey—¢;)dv= | o”8e;dv=

VrE VrE
= | 5e,do- | &V deydv=5W,, —5W re . 2.2)
VrE Ve
With (2.2), Eq. (2.1) is represented as
_ T
ST =Y (8 5Py ) =05 8Py =8y +3W i . (2.3)

FE
Equation (2.3) is integrated in a manner standard for the FEM. The reaction
matrix of a FE is derived from the expression for the virtual work done by the
internal forces due to the total strains dependent on the nodal displacements.
The virtual work of internal forces due to thermal strains is used to determine
the matrix of equivalent thermal loads, which supplements the matrix of
mechanical nodal loads.

It is common practice to use the Cartesian displacements u gsm of FE

nodes as unknowns for a spatial FE. For thin shells, it is expedient to use, as
unknown functions, the set of displacements of nodal points on the mid-surface
.

v, and the differences of nodal displacements v!"  on the bounding
85283 5283

surfaces of a FE:
t' t'
u +u
4 s1=+1sys s;=—lsys ! ! !
t __ 1 2°3 1 253 . Vt _,t t (24)

V53 = 2 > Vg “Ug=+1sys3 ~ Usj=—1sps3 *




128 ISSN 0132-1471. Omip marepianis i Teopist ciopya. 2014. Ne 92

Replacement (2.4) is considered as a changeover from an eight-node spatial
FE with three nodal displacements to a four-node shell FE with six generalized
displacements of nodes referred to the mid-surface of the FE. The triple linear
approximation of displacements, strains, and stresses allows us to integrate
(2.2) analytically and to obtain the explicit matrices of reactions, stiffness,
geometrical stiffness, and equivalent thermal loads, which made it easier to
calculate them. The equations derived for the spatial FE are universal because
they are independent of the nodal coordinates and displacements, the number
of layers, and engineering constants of layers. The characteristics of the FE and
associated additional parameters somehow appear in these equations. This
makes it possible to apply the FEM equations to all structural elements of an
inhomogeneous shell in deriving the governing system of geometrically
nonlinear equations.

Iterative algorithms for solving systems of nonlinear FEM equations are
based on multiple solution of linearized systems of equations [23, 37, 54]. By
linearizing the nonlinear FEM equations, we obtain, in analytic form, the
stiffness matrix and the matrix of geometrical stiffness for the spatial FE.
Adding the matrix of geometrical stiffness allows more accurate initial
approximations in the iterative procedure and almost halves the number of
iterations at a step of loading. It is also possible to increase the step.

2.2. Correcting the FEM Equations for the Modified FE. Deriving the
system of governing nonlinear equations for the FESM involves uniting
various combinations of SFE and MFE into a single ensemble of elements and
matching of the nodal generalized displacements referred to the mid-surfaces
of the SFE and MFE using the relationship between the generalized
displacements of the SFE and MFE and the respective coefficients of the
matrices of the SFE and MFE.

The generalized nodal displacements v’ and v’ of the mid-surface

85283 5253
(datum surface) of the FESM casing are used as the variables of the system of
governing nonlinear equations. The generalized displacements of the MFE are

denoted by f)f;;S} and f/f;;s3 . The generalized nodal displacements of the SFE
and MFE are related by

~it i i Rt A i'
03233 _03233 +a32‘¥3 VS2S3 ’ VS2S3 _bS2S3VS2S3 ’ (25)

where b, is a coefficient of change in the length of the FE edge, and a, ,, is

the ratio of the displacement of the FE edge to its length. These quantities are
the additional parameters of the universal FE.

Relation (2.5) are the compatibility and continuity conditions for the
displacements between all finite elements of the FESM on different sections of
a shell with smoothly varying and stepwise-varying thickness.
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3. Algorithm for Solving Problems of Nonlinear Deformation,
Buckling, and Postbuckling Behavior of Shells under
Thermomechanical Loading

3.1. Combined Algorithm for Solving a Nonlinear Buckling Problem. A
few studies [37, 44, 54, 58, 61, 64] are concerned with efficient algorithms for
solving problems of nonlinear deformation and buckling of inhomogeneous
shells. Solving nonlinear buckling problems for shells often involves obtaining
difficult-to-predict results. They depend on a considerable number of
parameters related to the geometry, boundary conditions, load, materials, and
structural elements.

The following requirements are imposed on the developed algorithm:
universality and capability to efficiently solve a wide class of problems;
automatic control of the nonlinear process; automatic following of the load—
deflection curve, complex as it may be; self-correction of algorithm
parameters, which simplifies the solution process; collection of statistical data
in following the load—deflection curve for the analysis and improvement of the
algorithm for certain classes of shells; feasibility of complex processes of
thermomechanical loading; availability of procedures for processing,
visualization, and documentation of the input data and results of solving a
nonlinear problem.

The problem of nonlinear deformation, buckling, and postbuckling
behavior of inhomogeneous shells is solved by a combined algorithm that
employs the parameter continuation method, a modified Newton—Kantorovich
method, and a procedure for automatic correction of algorithm parameters
[54, 61, 64]. Each step increments (or decrements) the external load parameter
P, which is related to the parameters of the mechanical (Q ) and temperature

(T) fields. The solution of the nonlinear problem is the relationship between
the external load parameter P and the displacement field P of the FESM,
which is determined at each step of loading AP . This relationship is usually
represented by a "load — deflection" (" P—U ") curve at characteristic points of
the shell.

3.2. Self-Correction of Algorithm Parameters. The efficient automation
of the solution algorithm requires implementing the following procedures:
selection of the continuation parameter; determination of its rational value;
change of the sign of the continuation parameter; determination of the load
increment from the displacement increment of a characteristic node; change
of the accuracy of the solution of the system of nonlinear equations; change
of the patterns and modes of thermomechanical loading at the current step;
filing of the input and output data for further documentation, analysis,
processing, and visualization. The experience of solving problems for
shells under mechanical and thermal loads suggests that the accuracy of the
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solution for the latter should be increased by four to five orders of
magnitude.

The algorithm is based on the generalized " P—U " curve in the form of
a loop with a branching point g

and singular points a, b, e, and 2
f (Fig. 5). The linearized matrix S50

of the governing equations T 5,

degenerates in the neighborhood of \ A

these points. The equations are / o\ )
. . . / \ b y y a

regularized and the singular points 4 Sl

are passed by replacing P by U and /

vice versa at the points s, +ss /

defined by the algorithm. To reduce /
the time it takes the computer to 2
solve the problem, the rational steps /
for the descent parameter are
determined. Fig. 5

The algorithm for solving the
buckling problem finds the branching points and allows drawing adjacent
deformation modes in their neighborhood. To identify a branching point, use is
made of a qualitative theory that states that at least one negative eigenvalue of
the linearized stiffness matrix represents a new equilibrium configuration of the
shell. The adjacent deformation mode is identified by introducing an
imperfection defined by the parameter A into the perfect initial configuration
of the shell. If A is small, its influence is seen near the branching point on the
" P—U " curve, which may become critical.

The efficiency of the method is substantially dependent on how it is
numerically implemented. The available software packages include poorly
developed algorithms for analyzing the geometrically nonlinear deformation,
buckling, and postbuckling behavior of shells [65, 66]. Obviously, the reason is
that because of their complexity and ambiguity, these problems are difficult to
solve with a user-friendly standard computational procedure.

The software package developed is research-oriented and meets the modern
requirements to such software regarding input data representation, design
models, efficient nonlinear problem-solving algorithm, data processing,
analysis, and visualization.

The nodal coordinates of the three-dimensional FESM of arbitrary shape
and regular topological structure are determined using a specially developed
mesh generator [3, 59, 61, 64].

oY

U
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4. Numerical Analysis of the Convergence and Accuracy of Solutions to
Problems of Nonlinear Deformation and Buckling of Inhomogeneous
Shells

Of great importance for the development of the FEM is its theoretical
justification [26, 27, 37, 43, 56]. This, however, is not sufficient to evaluate the
efficiency and applicability of finite-element schemes because asymptotic
estimates of accuracy give no indication of their behavior on real, coarse
meshes. Not less important is the numerical analysis of the properties of a FE,
which is performed by comparing FEM solutions and analytic, numerical, or
experimental solutions.

The efficiency, accuracy, and applicability of the method developed were
analyzed by solving special linear and nonlinear test problems
[6, 32,50, 61, 64]. Let us consider a number of typical examples.

4.1. Linear Solutions. An analysis of the accuracy of the solutions for
homogeneous and inhomogeneous rods, beams, frames, and rings as three-
dimensional bodies subject to uniform and nonuniform temperature fields
shows rapid convergence on coarse meshes [6, 64]. The results obtained for
framed structures and revealed thermoelastic effects can be generalized to thin-
walled structures. It is supported by studies on plates and shells.

After that, homogeneous and layered square plates under uniform pressure g
are used as examples to determine the errors and possible limits of the elastic
constants.

4.1.1. Bending Clamped One-Layer Square Plate. For a clamped one-
layer isotropic plate, the central deflection converges rapidly if compared with
the analytic solution [57]. Comparing the solution with those obtained with
well-known software (LIRA, SCAD, FRONT, ANSYS, NASTRAN,
COSMOS) and by other authors, we conclude that the solutions for rectangular
plane FEs converge from "above" and the solutions for spatial FEs converge
from "below". The same effect is revealed for an orthotropic plate.

It is analyzed the accuracy of the central deflection for two-layer and three-
layer simply supported plates [64]. The results are compared with calculations
in software SCAD, where it was used multilayer rectangular finite element
Ne 73 [66]. The multilayer FE is absent in software LIRA [65].

4.1.2. Bending Two-Layer Simply Supported Square Plate. We consider
the two-layer plate, loaded pressure intensity ¢ =0.06 MPa. The central

deflection of the plate has been compared to solutions obtained in the software
SCAD, by the refined iteratively-analytical theory [21], by the experimental-
theoretical method [35] and with the experimental data [35] (Table 1). The
input data: a size of the panel in the plan a = 0.3 m; the first layer (steel) —

thickness 0.0003 m, elastic modulus E =2.03-10° MPa, Poisson’s ratio



132 ISSN 0132-1471. Omnip matepianis i Teopis criopya. 2014. Ne 92

vy=0.3; the second thickness  0.0258 m,

E =0.0657-10° MPa, v=0.2 . The design model is a quarter of the panel.

The calculation results of the central deflection of the plate w obtained by
different methods have been compared with the experimental data. The
solution by MSFE and by SCAD converges rapidly. We conclude that the
solutions for MSFE and the iteratively-analytical theory converge to the
experimental data from"above" and the solutions for the experimental-
theoretical method and software SCAD converge from "below". The

layer  (concrete) —

significant error is less 10%.

Table 1
Method Iteratively- Experimental- .
of gl\fg 11::% SSX%AI‘SI])E’ analytical theoretical Expergrsnental
analysis s s [21] [35] [35]
w-10%,m | 0.0120 | 0.0109 0.0115 0.0102 0.0110
A, % 9.10 -0.91 4.5 -7.3 0

Acceptable results are obtained when the ratio of the elastic modules of two
layers is equal to 31. This fact should be taken into account when deciding on
the areas of possible application techniques.

4.1.3. Bending Three-Layer Simply Supported Square Plate. We
consider the three-layer plate [18], loaded pressure intensity ¢ =0.1MPa. The

input data: a size of the panel in the plan a =0.2768 m; the 1st and 3rd layers
are isotropic with thickness 0.00lm, E=6.8-10"MPa, v=03,
G =2.615-10* MPa; the 2nd layer is transversely isotropic with thickness

0.015m, E=0.48-10*MPa, v=0.3, G =0.038-10* MPa. The design model
is a quarter of the panel.

Table 2
MSFE SCAD .
Meglflod Reissne v . Engme
. 12x12 16x16 12x12 16x16 r arvak | -ering
analysis | g FEs FEs FEs theory
w103 | 0.2354 | 0.2369 | 0.3469 | 0.3475 | 0.3160 | 0.3050 | 0.2160
A, % -25.5 -25.0 9.78 9.97 0 -3.5 -31.6




ISSN 0132-1471. Onip matepiaxnis i Teopis cnopyx. 2014. Ne 92 133

The central deflection of the plate w obtained by MSFE has been
compared to analytical [18] Reissner’s (straight line hypothesis) and Varvak’s
(tangential stresses and cross-sectional curvature are taken into account)
solutions, to the solution produced by the engineering theory (straight normal
hypothesis) and to software SCAD (Table 2). Benchmark is the solution
obtained by Reissner’s theory.

For MSFE and software SCAD refining the mesh from 12x 12 FEs weakly
corrects the solution (the significant error is respectively about 25 and 10%).
The ratio of the elastic modules of material layers (carrier to a placeholder) is
14.2, and the ratio of the shear modules is 68.8. These data should be taken into
account when deciding on the areas of possible application of these techniques.

The examples indicate a rough limit of applicability of the method, which
corresponds to the well-known statement that the elastic constants of layers
should not differ by more than one to two orders of magnitude.

4.2. Solutions in Geometrically Nonlinear Problems of Buckling, and
Postbuckling Behavior. Results of research of nonlinear deformation are
considered by the example of a number of inhomogeneous isotropic shells. The
accuracy of solutions of buckling problems is evaluated by comparing them
with nonlinear solutions obtained by other authors and by software LIRA and
SCAD [15, 17, 19, 30, 31], which used flat finite elements: triangular Ne 342
and quadrangular Ne 344,

"Absolutely rigid insert plates" [65,68] and "absolutely rigid solids"
[44, 66] are used when approximating the shell sections with ribs, channels and
cavities, where FEs are joined eccentrically.

4.2.1. A Spherical Panel with Square Planform and Constant
Thickness. Panel is hinged along the contour and loaded with uniform normal
pressure intensity g [64]. Results are presented in terms of dimensionless

parameters: c_]=a4q/ (Eh4) , ﬁlyzuly/h. Curvature of the panel is defined by

parameter K=2a2/(Rh)=32, where: A=1 cm is the thickness, a =60/ is a
size of the panel in the plan, R=225/ is the radius of mid-surface, elastic
modulus E =2.1-10° kg/em? , Poisson’s ratio v =0.3 . The FESM is a quarter
of the panel with mesh 30x 30 FEs. Comparison is made with the solution of
[30] by the a “load — deflection” (“q —u ™) curves at the center of the panel
(Fig. 6,a).

The problem has been solved by software LIRA and software SCAD with
using its three non-linear algorithms. The upper critical load g.? obtained by
software LIRA is in good agreement with the solution [49]: for two variants of

the method of successive loadings (SL) discrepancy is less than 3%, the
method Newton—Raphson (N-R) gives error -1.8%. This problem with the
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software SCAD has been solved by the method Newton—Kantorovich (N-K)
and by the method Newton—Raphson (errors -4.9%). Disagreement with the
solution by MFES is -3.15%. Equilibrium configurations for the deformed
panel in the prebuckling and postbuckling domains for all solutions have a
simple form and are in good agreement with each other (Fig. 6,b).

— x1:cm
q v 0 o

200 [

150 [

100 |

50 Karpov

o SCAD
* LIRA

-50 ! ! ! i | ! = -5 el . . L N o
0 -2 -4 -6 u 0 5 10 15 20 25 X cm

Fig. 6

4.2.2. Shells with Linearly Varying Thickness. The effect on the buckling
of the shallow spherical panels of linear variation in the thickness along the
meridian is examined, in order to find rational laws of distribution of the
material in the volume of construction [61,64]. Shell of revolution clamped at
the edge and subjected to uniform normal pressure (Fig. 7,a). The input data:
rise H =0.05m, radius of mid-surface R =10.025m, radius of support

boundary a =1m, “base” thickness h=0.01m, E=19.610* MPa, v=0.3.

(2)

Fig. 7
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In general form, we represent the law of linear distribution of thickness
along the meridian panel by its thickness in the center %._, and at the edge

By s h(P)=hy_oy+(h —h._)7 , where ¥=r/a. We examine three laws of
linear variation in the thickness A(r) (Fig. 7,b,c; type of variable thickness is
indicated by the appropriate icon):

1) h(F)=h"[1+(b,~1)7]; 2) h(F)=h"[1+(b,~1)(1-7)]; 3) h(F)=h"b, , where
b,=hey /iy » by=hiy/hisy, by=hy /K" are parameters characterizing the
degree of linear variation in the thickness. The value b,=b,=b, =1
corresponds to a panel of constant “base” thickness 4" . The thickness hy, is
determined from the volume of a panel V : &, =V /(2nHR).

q q
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q
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—o—  LIRA
0 . . . . .
0 -05 -1 -15 -2
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Fig. 8
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Consider shells characterizing by equal volumes J with appropriate
parameters b_, b, b, . Solutions obtained by MFES [60,61,64] are compared
with those obtained by software LIRA and SCAD. The results are presented in
dimensionless form: §=a4q/(Eh*4), Elvzulv/h* , i_z(?)zh(?)/h* . Comparing
the results reveals complete agreement between the “g—u “curves in the

prebuckling domain and in the area of the upper critical point for all solutions
(Fig. 8).

4.2.3. Faceted Panels of Stepwise-Varying Thickness. Consider faceted
shells formed from the above smooth spherical panels with thickness linearly
varying [61,64]. The mid-surface of the spherical shell of revolution is
represented by a faceted surface inscribed in it and having 16 flat faces (4x4

for a quarter of the shell, Fig. 9,a). The linearly varying thickness i_z(?) is

replaced by close stepwise-varying thickness i_zl (Fig. 9,b) according to the

range of steel sheets [67] with a permissible in engineering calculations
difference of the volumes of these shells (-4.3...40.2%).

:

Caver plates  Casing Midsurface
- / of shell casing

Fig. 9

Nonlinear solutions obtained by MFES are compared with those obtained
by software LIRA and SCAD for shells in rational manners [64], which are
thicker in the middle. We compare faceted shells with a compound by the mid-
surface faces for parameters thickness b, = 0.55, 1 and b, =1, 2, 4 (Fig. 9,c).

)

We observe well agreement between the “g—u ” curves in the prebuckling
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domain (Fig. 10). At the branching point for panels with parameters b, =0.55
and b,=b,=1 difference the load is respectively -0.18 and +1.98%, and for
deflections it is +1.01 and +3.5%. The upper critical load ¢.’ is in good

agreement for panels with parameters b, =2 and 4 (divergence is within -1.91

and 4.17%). At the Fig. 10 to assess the effect faceted, dotted line is shown the
solutions obtained by MFES for smooth panel linearly variable thickness.

L3 ——
o |-
b, =055

BO |

4 F

oy + — MFES
——  SCAD
—o— LIRA

[] 1 1

0 -01 -02 -09 -04 O

Fig. 10

4.2.4. Ribbed Panels with Square Planform. Investigation of the stability
of rib-reinforced shells [61,64] is presented by the example of deep spherical panel
square in plan (K=64, a=120h, R=450h), hinged at the edges, and subject to
uniform normal pressure (Fig. 11 and 12). Two variants of the shells reinforced
ribs from inside (height /,=3h and width b,=2h) is considered: (i) with two

central cross-ribs (with mesh 21x21 FEs) and (ii) with four pairs of equally
spaced cross-ribs (with mesh 22x22 FEs).
Solutions obtained by MFES and software LIRA are compared with those

obtained by II’in & Karpov [30]. The “¢g—u ” curves are analyzed: for the first
variant (i) at the point "o" (Fig. 11,a) and at the point "b" (Fig. 11,b), and for the
second variant (ii) at the center of the shell (Fig. 12,a). For comparison, the dashed-
dotted line shows the solution for the smooth panel (4, =0).

The solutions to the first problem (i) obtained by MFES and software LIRA are
in good agreement for the “g—u ” curves in the prebuckling domain and at the
moment of loss of stability (Fig. 11). The difference between the values of g7 for

the solution [30] and by MFES is less than 0.5%, the difference for these by
MFES and by software LIRA is 1.1%.
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The solutions to the second problem (ii), for the panel reinforced with either
ribs, are in good agreement on all sections of the “g—u ” curve. The difference

between the values of g/ for the solution [30] and by MFES is -3.8%, the
difference for these by MFES and by software LIRA is 7.7%.

Configurations for the deformed panel in the prebuckling (1) and
postbuckling (2) domains for all solutions have a simple form and are in good
agreement with each other (Fig. 12,0).
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4.2.5. Panels of Square Planform with Channels and Cavities.
Investigation of the buckling of shells by channels and cavities is presented by the
example of a shallow spherical panel square in plan with K =32 [61,64]. It is
considered a shell with two variants of non-through weakens: (i) four identical
cross channels (width b, =2k and depth A, =0.34); (ii) four square cavities

(width b,, =6A and depth h,,=0.7h). Three cases of eccentric arrangement of

channels and cavities respect to the casing mid-surface are compared (Fig. 13).
Each case of the eccentricity is indicated by the appropriate icon. The FESM is a
quarter of the panel with mesh 30x 30 FEs.

In all cases, solutions obtained by MFES and software LIRA coincide
completely in the prebuckling domain and in the domain of the upper critical
load (Fig. 13). There is good agreement for the results obtained by MFES,
software LIRA and Karpov [30] for panels weakened from inside
(Fig. 13, a, d). For these panels, the results obtained by software SCAD differ
substantially compared with the results of [30] (the error -13.39 and -11.98%),
and with the results by MFES (the error -12.03 and -8.61%).
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There is good agreement between the solutions obtained by MFES, software
LIRA and SCAD for shells without eccentric arrangement of channels and
cavities (Fig. 13, b, e). The difference of the results is less than 1%.

4.2.6. Shells under Combined Action of Force and Temperature Fields.
When there are both temperature and force fields, the nonlinear solutions have
been analyzed by examples axisymmetric conical panel and square in terms of
spherical panel with a hole for a clamped shallow conical round panel in terms
[64]. We take into account by MFES and software LIRA that effect of the
thermomechanical load occurs in two stages. We have been taken into account
by MFES and software LIRA that effect of the thermomechanical load occurs
in two stages. At the first stage the shell is gradually heated by the temperature

field whose parameter ¢ increases from 0°C to a set value 7°C. At the
second stage the panel is subjected to uniform normal pressure in addition.

4.2.6.1. Axisymmetric Conical Panel. A clamped shallow conical panel
with the radius of support boundary @ =100~ and rise H =3k is considered
(Figs. 14). At the first stage of the

loading the shell is heated to a set value L X" (@)

20°C [31]. The input data: % =0.01m, T=+200C D b const
E=19.6-10*MPa, v=0.3, linear

expansion coefficient HW% ()

a=0.125-10"*deg™". Results are ? —aﬂ; x?
presented in terms of dimensionless Fig. 14

parameters: k =H/h, 1=ta(a/h)’.
The design model is a quarter of the panel with mesh 20 x 40 FEs. Solutions by
[31], MFES, and software LIRA are compared.

The considered methods have good agreement the

3 )

‘g-u” curves
(Fig. 15,a) and forms of deformation (Fig. 15,b) at all stages of loading. In the
area of the upper critical load there is a discrepancy regarding the solution by
MFES: the difference between the values of g# for software LIRA is 10.8%,
and for [31]itis -3.6%.

4.2.6.2. Panel of Square Planform with Hole. A shallow spherical panel
(K=32, a=60h) hinged at the edges and having a central square hole (width
b, =12h) is considered. The input data: #=0.01m, E=20.59-10* MPa,v=0.3,

0=0.1210"*deg™". The design model is a quarter of the panel with mesh

30x 30 FEs. The effect of three cases preheating by 7=-20°,0°,20°C on the
stability of the shell is considered.
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Fig. 16,a shows a comparison of the “g —u ” curves obtained by MSFE,
software LIRA and in [31] for shells without hole (mmm) and with hole (m:m)

when their loading only pressure (7=0°C). For the panel without hole the
deflection have been considered at its center. For the panels without hole the
deflection have been considered at its center. Comparing the results by MFES
and software LIRA reveals agreement between the “g —u ” curves in the

prebuckling domain and when loss of stability: the difference between the
values of g7 is respectively -1.9% and 2.9%. In the area of the upper critical
load there is a divergence of the “¢ —u ” curves obtained by MSFE, software
LIRA and in [30]: the difference between the values of g” by MFES and [30]
is respectively 3.3 % and -9.9%.

") =i e K=a2 q o K=32
) 20°C T=0°C
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150 ¢ 4 b 150 1

74 100 [
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........ Karpuv
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For all cases of preheating there is agreement between the “¢ —u ” curves
in all domains of solutions by MFES and software LIRA (Fig. 16,b). The
difference between the values of g7 is within 3.0 — 3.5%, and this for the
deflection 172;“1’ at the point 4 is within 0.3 — 4.1 %.

Configurations for the deformed .

panel after pre-cooling to 7 =-20°C 0 [ ——
(Fig. 17,a) and  preheating to |
T =+20°C (Fig.17,b) are in good 00057 i
agreement with each other and have |
little difference from the original form o0t | i
(T=0°C, ¢ =0). Buckling forms are
in good agreement too. Buckling of the 005 b
shell occurs with click of its central
part (Fig. 17,¢).

Conclusions ,

We have developed a finite-element a
method to analyze thin-walled shell X', m
structures. The method employs, for all
structural elements of an
inhomogeneous shell, the  goos|
geometrically nonlinear equations of
the three-dimensional theory of
thermoelasticity taking into account all \
nonlinear terms and components of the !
strain and stress tensors. Use was also 0151 q.r

|
|

—— = == -

made of the moment finite-element
scheme extended to  nonlinear .02 T
thermoelasticity of thin inhomogeneous (N 0 O - = 25T 0
shells. .

We have developed a unified model ‘:"‘*‘;‘:::"f_:';:‘;‘::::.:i';::%
based on the universal spatial FE that et
describes the multilayer structure of a
material and geometrical features of
structural elements of an ¢
inhomogeneous  shell: casing of Fig. 17
varying thickness, ribs, cover plates,
cavities, channels, holes, sharp bends of the mid-surface.
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We have developed an efficient iterative algorithm for solving problems of
nonlinear deformation, buckling, and postbuckling behavior of thin
inhomogeneous shells under thermomechanical loading.

The reliability of linear and nonlinear solutions for a wide class of
inhomogeneous shells has been numerically justified by analyzing their
convergence and comparing with those obtained by other authors and by
software LIRA and SCAD.
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baowcenos B.A., Conoseii M.O., Kpusenxo O.11.
MOJIEJTIOBAHHSI HEJIHIMHOTO JE®OPMYBAHHS TA BTPATH CTIMKOCTI
NPYXXHUX HEOJHOPITHUX OBOJIOHOK

BuximageHo OCHOBH MeTOAa PO3B'I3yBaHHS CTaTHYHUX 3alad TEOMETPUYHO HENiHiHHOro
nehopMyBaHHS, CTIHKOCTI Ta 3aKPUTUYHOI MOBEIHKH TOHKUX HPYKHUX HEOTHOPIIHUX 0OOJIOHOK,
0 MaloTh CKJIAJHy ()OpMY CepEeIMHHOI NMOBEPXHI, FE€OMETPHYHI OCOOJIMBOCTI 3a TOBINHHOIO,
OaraTomapoBy CTPYKTypy Marepialxy Ta 3HaXOMATHCS B YMOBAaX CKJIQJHOTO TEPMOCHIIOBOIO
HaBaHTaxxeHHs. [Tinxin 6a3yeThesl Ha TEOMETPHYHO HEMHINHKX CHIBBITHOIIEHHSX TPHUBUMIPHOI Teopil
TEpPMOIPY)KHOCTI Ta BHUKODHCTAHHI MOMEHTHOI CXEMH CKIHYEHHHX eJIeMeHTiB. J[aHO umHCcenbHe
OOIpyHTYBaHHS MeTola. BHKOHAHO IOPIBHSHHS PO3B'3KIB C PO3B'SI3KAMH IHIIMX aBTOPIB 1 B
nporpamMuux komriekcax JIIPA, SCAD

KirouoBi ciioBa: reoMeTpHyHO HemmiHiMHe IedopMyBaHHS, CTIiHKiCTh, TOHKa IIpY)KHA
HEOJHOpiZHA 000JIOHKA, TEPMOCHUIIOBE HABAHTAXKCHHSI.

baowcenos B.A., Conoseii HA., Kpusenxo O.11.
MOJEJUPOBAHUE HEJUHEMHOTO JE®OPMHUPOBAHMS UM TIOTEPH
YCTOWYUBOCTH YNIPYTUX HEOJJTHOPOIHBIX OBOJIOYEK

W3noxkeHbl OCHOBBI METOJA DPELIEHHs CTaTHYECKUX 3ajJau I'eOMETPUUECKH HEIUHEHHOro
nehOpMHUPOBAHUS, YCTOHINBOCTH U 3aKPHTHYECKOTO MOBEJCHHSI TOHKUX YNPYTUX HEOTHOPOIHBIX
000J109eK, HMEIOIHX CIOKHYIO (POPMY CPEAUHHOH MOBEPXHOCTH, F€OMETPUUECKHE 0COOCHHOCTH
M0 TOJILHMHE, MHOTOCIOWHYK CTPYKTYypy MaTepualla U HaXOIATCS B YCIOBUSAX CIOXHOIO
TEPMOCHIIOBOr0 HarpyxeHus. Iloaxon OCHOBaH Ha I€OMETPUYECKM HENMHEHHBIX COOTHOIUEHMSAX
TPEXMEPHOH TEOPUH TEPMOYNPYTOCTH M HCIOJIb30BAHMM MOMEHTHOH CXEMbI KOHEYHBIX 3JIEMEHTOB.
JlaHo umcieHHOEe OOOCHOBAaHHE METOZA. BBINONHEHO CpaBHEHHWE PEIICHHH C PelICHHUSIMH JPYrux
aBTOPOB U B ITporpaMMHbIX komiuiekcax JIMPA, SCAD.

KiioueBble c10Ba: reOMETPHUYESCKH HENMMHEHHOe NepOopMUpOBaHHE, yCTOWYMBOCTH, TOHKAs
yIpyrast HeOJHOPOJHAst 000JI0uKa, TEPMOCHIOBAs HATPY3Ka.



