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MODELING OF NONLINEAR DEFORMATION AND BUCKLING 
OF ELASTIC INHOMOGENEOUS SHELLS 
 
 
The paper outlines the fundamentals of the method of solving static problems of geometrically 

nonlinear deformation, buckling, and postbuckling behavior of thin thermoelastic inhomogeneous 
shells with complex-shaped mid-surface, geometrical features throughout the thickness, and 
multilayer structure under complex thermomechanical loading. The method is based on the 
geometrically nonlinear equations of three-dimensional thermoelasticity and the moment finite-
element scheme. The method is justified numerically. Comparing solutions with those obtained by 
other authors and by software LIRA and SCAD is conducted. 
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Introduction 
The trends in the development of structural engineering and the design of 

thin-walled shell structures call for refined numerical methods for the analysis 
of the nonlinear deformation and buckling of various shells. Real shell 
structures are made inhomogeneous (smoothly-variable and stepwise-varying 
thickness, knees, ribs, cover plates, holes, cavities, channels, facets, layers) to 
enhance reliability and reduce materials consumption. Thermal fields may 
cause substantial strains and affect the mode of and time to buckling. 

The present paper outlines a method for and results of solving static 
problems of nonlinear deformation and buckling of various shells subject to 
mechanical and thermal loads, because of uniform methodological positions of 
the 3-d geometrically nonlinear theory of thermoelasticity and the finite-
element method (FEM) [4-12, 32, 50-55, 60-64]. 

The stability of shells is addressed in many studies 
[1, 14, 17, 19, 22, 24, 25, 31], where various assumptions are made to simplify 
problem solving. A few studies are concerned with the thermal stability of 
shells of simple geometry [2, 15, 16, 19, 22, 42, 46]. The three-dimensional 
approach to the study of shells is addressed in the monographs [20, 28, 37, 47], 
papers [29, 34, 36], and reports [33, 38, 39], which have recently increased in 
number. The three-dimensional nonlinear deformation and buckling of 
inhomogeneous shells were studied in a few publications [9, 36, 37]. In the 
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FEM, this approach involves creation of design models based on universal 
spatial finite elements (FEs) [13, 29, 36, 37, 39, 52, 60-64]. 

1. Problem Formulation 
1.1. Basic Principles and Hypothesis. We will solve static problems of the 

stress–strain state (SSS), buckling, and postbuckling behavior of a wide class 
of thin inhomogeneous shells subject to external mechanical loads and 
nonuniform bulk heating. The SSS of a shell and its structural elements at all 
stages of loading in both prebuckling and postbuckling domains is determined 
using the geometrically nonlinear equations of the three-dimensional theory of 
thermoelasticity and taking into account all nonlinear terms and all the 
components of the strain and stress tensors. By the inhomogeneity of a shell is 
meant that (i) its thickness is continuously or stepwise variable and (ii) it 
consists of combinations of multilayer stacks along the thickness and in plan. 
The casing of the shell and the ribs reinforcing it can consist of an arbitrary 
number of layers of varying thickness bonded into a single piece. Each layer 
can be anisotropic and different from the others. Thus, thin multilayer shells of 
variable thickness and complex geometry are considered as three-dimensional 
bodies that can be reinforced with ribs and cover plates, weakened by cavities, 
channels, and holes, and have sharp bends in the mid-surface (Fig. 1). 

 

 

Fig. 1 
 
The SSS of the shell is represented in a local curvilinear coordinate system 

ix  with basis ie 
 ir x 


 and a global Cartesian coordinate system 'ix  with 

basis 'ke 
 'kr x 


 (Fig. 2) [61, 64]. 
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Fig. 2 

 
The nonlinear deformation of shells is analyzed using the incremental 

method based on the general Lagrangian formulation where the trajectories of 
the strain and stress vectors are constructed using the increments of finite 
strains and stresses in the basis of the Lagrangian (reference) coordinate system 
[61, 64]. 

Two hypotheses are used to describe the SSS of a thin inhomogeneous 
shell. 

The nonclassical kinematic hypothesis of deformed straight line: though 
stretched or shortened during deformation, a straight segment along the 
thickness remains straight. This segment is not necessarily normal to the mid-
surface of the shell. The displacements are assumed distributed linearly along 
the thickness, which is conventional in the theory of thin shells [41]. The layers 
are bonded into a single piece so that there is no slippage and separation 
between them and the components of the displacement vector are equal at the 
interfaces. With certain restrictions on the material properties of the layers, this 
assumption leads to quite accurate solutions of the problems of buckling and 
vibration of thin multilayer shells [13, 45]. The hypothesis allows us to join 
spatial FEs keeping compatibility of the coordinates and displacements and to 
naturally model sharp bends, inclined walls of ribs, cavities, and holes. 

The static hypothesis compressive assumes that the stresses 11
n
  in the 

fibers of the nth layer are constant throughout the thickness (along the 1x -
axis): 

11

1 0n

x





.                                                (1.1) 



124                          ISSN 0132-1471. Опір матеріалів і теорія споруд. 2014. № 92 
 

 

Consider a steady-state thermal process, in which the temperature field in 
the shell is a known function of coordinates, ( )iT T x , independent of the SSS 
[61,64]. Since the shell is thin, the temperature may be considered linearly 
distributed throughout the thickness of the layer. The effect of the mechanical 
and thermal fields on the shell is represented as a single process of loading 
described by a relationship between the general load parameter and the 
parameters of mechanical and temperature fields. The shell is modeled by a 
nonlinear elastic continuum subject to large displacements and small strains 
whose components are linear functions of stresses. The layers of the shell are 
considered linear elastic and described by the generalized Duhamel–Neumann 
law [40] 

( ) ( )
e T Tij ijkl ijkl ijkl ij ij

kl kl klkl kl
C C C T           ;           (1.2) 

' ' ' ' ' '( ) ( ) ( )1 1
2 2

k k i k k j k i k j
ij j iC u x C u x u x u x             ,   (1.3) 

where e
kl
  is the tensor of elastic strains related to internal stresses ij ; kl  is 

the tensor of finite (total) Cauchy–Green strains; T
kl
  is the tensor of thermal 

strains induced by a change in the initial temperature 0T  by T ; ij ijkl
klC    

are stresses dependent on total strains; T ij ijkl
klC T    are stresses dependent on 

thermal strains; ijklC  are the components of the stiffness tensor; kl  are the 

components of the tensor of thermal-expansion coefficients; ' 'k k i
iC x x    are 

the components of the coordinate transformation tensor; and 'ku  are the 
displacements in the Cartesian coordinate system. 

The anisotropic inhomogeneous material of the shell is modeled by 
isotropic, transversely isotropic, and orthotropic materials of its layers [51,64]. 

1.2. The Universal Spatial FE and its Parameters. To develop a finite-
element shell model (FESM), we approximate a thin shell by one spatial FE 
throughout the thickness, which is an efficient approach [13,20,28,36,37,39,48, 
52,61,64]. The structural elements of an inhomogeneous shell require that the 
FE be universal: it should be eccentrically arranged relative to the mid-surfaces 
of the casing, it should be possible to vary the thickness of the lateral edges of 
the FE; the lateral edges of the neighboring FEs should be in continuous 
contact; and it should be possible to model sharp bends in and the multilayer 
structure of the shell. 

The universal FE (Fig. 3) is based on an isoparametric spatial FE with 
polylinear shape functions for coordinates and displacements [52, 61, 64]. 
Additional variable parameters are introduced to enhance the capabilities of the 
modified FE. According to its constant and variable topological, geometrical, 
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and mechanical parameters, the FE is three-dimensional and has 8 nodes, 6 
faces, and 12 edges with set material constants of homogeneous layers, mesh 
( ks ), local ( kx ), and Cartesian ( 'ix ) coordinates of nodes (Fig. 3,a,b). 

 

 
a 

 
b 

Fig. 3 
 

The geometry of the FESM is set in two stages: (i) the Cartesian 
coordinates of the nodes on the bounding surfaces of the FE of the casing (SFE 
is a hexahedron ABCDEFGH , Fig. 4) are set; (ii) on sections with stepwise-
variable thickness, the nodal coordinates of the SFE along the 1x -axis are 
replaced by the nodal coordinates of the modified FE (MFE is a hexahedron 
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ABCDEFGH       ). The SFE is transformed into MFE by replacing the edges of 
the SFE ( AB , CD , EF , GH ) by the edges of the MFE ( AB  , CD  , EF  , GH  ). 

By varying the additional parameters, the modified spatial FE is endowed 
with the properties of a universal FE, which allows unified modeling of a wide 
class of inhomogeneous shell structures. The idea of transforming a SFE into a 
MFE may be used as an example for the creation of other universal FEs. 

 

 
Fig. 4 

 
1.3. The Moment Finite-Element Scheme at the Problems of 

Thermoelastic Deformation of Inhomogeneous Shells. To derive the 
governing finite-element equations for displacements, use is made of the 
moment finite-element scheme (MFES) developed and theoretically proved by 
Sakharov [37, 49]. The MFES is applied to thin multilayer shells of stepwise-
variable thickness undergoing geometrically nonlinear deformation under 
thermomechanical loads [8, 9, 11, 32, 55, 61, 64]. The MFES approximations 
of displacements and strains guarantee a correct description of the rigid-body 
displacements of FEs, which enhances the convergence and accuracy of 
solutions on coarse meshes. 

The MFES represents the total strains (1.3) as truncated Maclaurin series 
about the FE center. So strains are defined within a FE as linear functions of 

ix . Those terms that can be exactly calculated in the case of polylinear 
displacements are retained in the series. 

The thermal strains T
ij , which depend on both temperature and material 

properties of the layer, are assumed to be linear functions of the coordinates 
2x  and 3x  within a FE and in stepwise-linear functions of the coordinate 1x  

[9, 11, 61, 64]. They are expanded into a Taylor series about the center of the 
nth layer. 
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Stresses are represented as linear parts of a Taylor series in powers of local 
coordinates ix  about the center of the nth layer. 

2. FEM Equations for Elastic Inhomogeneous Shells Undergoing 
Geometrically Nonlinear Deformation 
2.1. FEM Equations for Thin Inhomogeneous Shells. The nonlinear 

deformation of a shell is considered as a sequence of equilibrium states during 
steps of loading. The history of the SSS and the geometry of the shell are 
assumed known at the current step of loading. The equilibrium state of the 
FESM is determined based on the virtual-displacement principle and the 
Lagrange equation 

  0FE FE
FE

П W A     ,                                  (2.1) 

here П  is the strain energy of the FESM; FEW  and FEA  are the works done by 
internal and external forces of a FE; 

FE
  is the sum over finite elements of the 

FESM. 
With (1.2), the virtual work of internal forces is given by 

( )FE

FE FE

Tij ij
ij ij ij

V V
W d d          v v  

= FEFE

FE FE

TTij ij
ij ij

V V
d d W W       v v .                   (2.2) 

With (2.2), Eq. (2.1) is represented as 

  0FE FE
FE

П W P     ;  FEFE FE

T
P A W   .                (2.3) 

Equation (2.3) is integrated in a manner standard for the FEM. The reaction 
matrix of a FE is derived from the expression for the virtual work done by the 
internal forces due to the total strains dependent on the nodal displacements. 
The virtual work of internal forces due to thermal strains is used to determine 
the matrix of equivalent thermal loads, which supplements the matrix of 
mechanical nodal loads. 

It is common practice to use the Cartesian displacements 
1 2 3
't

s s su  of FE 
nodes as unknowns for a spatial FE. For thin shells, it is expedient to use, as 
unknown functions, the set of displacements of nodal points on the mid-surface 

2 3
't

s s  and the differences of nodal displacements 
2 3
't

s s  on the bounding 

surfaces of a FE: 

1 2 3 1 2 3
2 3

' '
1 1'

2

t t
s s s s s st

s s
u u 

  ;  
2 3 1 2 3 1 2 3
' ' '

1 1
t t t
s s s s s s s su u    .          (2.4) 
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Replacement (2.4) is considered as a changeover from an eight-node spatial 
FE with three nodal displacements to a four-node shell FE with six generalized 
displacements of nodes referred to the mid-surface of the FE. The triple linear 
approximation of displacements, strains, and stresses allows us to integrate 
(2.2) analytically and to obtain the explicit matrices of reactions, stiffness, 
geometrical stiffness, and equivalent thermal loads, which made it easier to 
calculate them. The equations derived for the spatial FE are universal because 
they are independent of the nodal coordinates and displacements, the number 
of layers, and engineering constants of layers. The characteristics of the FE and 
associated additional parameters somehow appear in these equations. This 
makes it possible to apply the FEM equations to all structural elements of an 
inhomogeneous shell in deriving the governing system of geometrically 
nonlinear equations. 

Iterative algorithms for solving systems of nonlinear FEM equations are 
based on multiple solution of linearized systems of equations [23, 37, 54]. By 
linearizing the nonlinear FEM equations, we obtain, in analytic form, the 
stiffness matrix and the matrix of geometrical stiffness for the spatial FE. 
Adding the matrix of geometrical stiffness allows more accurate initial 
approximations in the iterative procedure and almost halves the number of 
iterations at a step of loading. It is also possible to increase the step. 

2.2. Correcting the FEM Equations for the Modified FE. Deriving the 
system of governing nonlinear equations for the FESM involves uniting 
various combinations of SFE and MFE into a single ensemble of elements and 
matching of the nodal generalized displacements referred to the mid-surfaces 
of the SFE and MFE using the relationship between the generalized 
displacements of the SFE and MFE and the respective coefficients of the 
matrices of the SFE and MFE. 

The generalized nodal displacements 
2 3
'i

s s  and 
2 3
'i

s s  of the mid-surface 
(datum surface) of the FESM casing are used as the variables of the system of 
governing nonlinear equations. The generalized displacements of the MFE are 
denoted by 

2 3

'i
s s  and 

2 3
'i

s s . The generalized nodal displacements of the SFE 
and MFE are related by 

2 3 2 3 2 3 2 3
' ' 'i i i

s s s s s s s sa    ;  
2 3 2 3 2 3
' 'i i

s s s s s sb   ,                      (2.5) 

where 
2 3s sb  is a coefficient of change in the length of the FE edge, and 

2 3s sa  is 
the ratio of the displacement of the FE edge to its length. These quantities are 
the additional parameters of the universal FE. 

Relation (2.5) are the compatibility and continuity conditions for the 
displacements between all finite elements of the FESM on different sections of 
a shell with smoothly varying and stepwise-varying thickness. 
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3. Algorithm for Solving Problems of Nonlinear Deformation, 
Buckling, and Postbuckling Behavior of Shells under 
Thermomechanical Loading 
3.1. Combined Algorithm for Solving a Nonlinear Buckling Problem. A 

few studies [37, 44, 54, 58, 61, 64] are concerned with efficient algorithms for 
solving problems of nonlinear deformation and buckling of inhomogeneous 
shells. Solving nonlinear buckling problems for shells often involves obtaining 
difficult-to-predict results. They depend on a considerable number of 
parameters related to the geometry, boundary conditions, load, materials, and 
structural elements. 

The following requirements are imposed on the developed algorithm: 
universality and capability to efficiently solve a wide class of problems; 
automatic control of the nonlinear process; automatic following of the load–
deflection curve, complex as it may be; self-correction of algorithm 
parameters, which simplifies the solution process; collection of statistical data 
in following the load–deflection curve for the analysis and improvement of the 
algorithm for certain classes of shells; feasibility of complex processes of 
thermomechanical loading; availability of procedures for processing, 
visualization, and documentation of the input data and results of solving a 
nonlinear problem. 

The problem of nonlinear deformation, buckling, and postbuckling 
behavior of inhomogeneous shells is solved by a combined algorithm that 
employs the parameter continuation method, a modified Newton–Kantorovich 
method, and a procedure for automatic correction of algorithm parameters 
[54, 61, 64]. Each step increments (or decrements) the external load parameter 
P , which is related to the parameters of the mechanical (Q ) and temperature 
( T ) fields. The solution of the nonlinear problem is the relationship between 
the external load parameter P  and the displacement field P  of the FESM, 
which is determined at each step of loading P . This relationship is usually 
represented by a "load – deflection" (" P U ") curve at characteristic points of 
the shell. 

3.2. Self-Correction of Algorithm Parameters. The efficient automation 
of the solution algorithm requires implementing the following procedures: 
selection of the continuation parameter; determination of its rational value; 
change of the sign of the continuation parameter; determination of the load 
increment from the displacement increment of a characteristic node; change 
of the accuracy of the solution of the system of nonlinear equations; change 
of the patterns and modes of thermomechanical loading at the current step; 
filing of the input and output data for further documentation, analysis, 
processing, and visualization. The experience of solving problems for 
shells under mechanical and thermal loads suggests that the accuracy of the 
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solution for the latter should be increased by four to five orders of 
magnitude. 

The algorithm is based on the generalized " P U " curve in the form of 
a loop with a branching point g  
and singular points a , b , e , and 
f  (Fig. 5). The linearized matrix 

of the governing equations 
degenerates in the neighborhood of 
these points. The equations are 
regularized and the singular points 
are passed by replacing P by U and 
vice versa at the points 1 5s s  
defined by the algorithm. To reduce 
the time it takes the computer to 
solve the problem, the rational steps 
for the descent parameter are 
determined. 

The algorithm for solving the 
buckling problem finds the branching points and allows drawing adjacent 
deformation modes in their neighborhood. To identify a branching point, use is 
made of a qualitative theory that states that at least one negative eigenvalue of 
the linearized stiffness matrix represents a new equilibrium configuration of the 
shell. The adjacent deformation mode is identified by introducing an 
imperfection defined by the parameter   into the perfect initial configuration 
of the shell. If   is small, its influence is seen near the branching point on the 
" P U " curve, which may become critical. 

The efficiency of the method is substantially dependent on how it is 
numerically implemented. The available software packages include poorly 
developed algorithms for analyzing the geometrically nonlinear deformation, 
buckling, and postbuckling behavior of shells [65, 66]. Obviously, the reason is 
that because of their complexity and ambiguity, these problems are difficult to 
solve with a user-friendly standard computational procedure. 

The software package developed is research-oriented and meets the modern 
requirements to such software regarding input data representation, design 
models, efficient nonlinear problem-solving algorithm, data processing, 
analysis, and visualization. 

The nodal coordinates of the three-dimensional FESM of arbitrary shape 
and regular topological structure are determined using a specially developed 
mesh generator [3, 59, 61, 64]. 

 
Fig. 5 
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4. Numerical Analysis of the Convergence and Accuracy of Solutions to 
Problems of Nonlinear Deformation and Buckling of Inhomogeneous 
Shells 
Of great importance for the development of the FEM is its theoretical 

justification [26, 27, 37, 43, 56]. This, however, is not sufficient to evaluate the 
efficiency and applicability of finite-element schemes because asymptotic 
estimates of accuracy give no indication of their behavior on real, coarse 
meshes. Not less important is the numerical analysis of the properties of a FE, 
which is performed by comparing FEM solutions and analytic, numerical, or 
experimental solutions. 

The efficiency, accuracy, and applicability of the method developed were 
analyzed by solving special linear and nonlinear test problems 
[6, 32, 50, 61, 64]. Let us consider a number of typical examples. 

4.1. Linear Solutions. An analysis of the accuracy of the solutions for 
homogeneous and inhomogeneous rods, beams, frames, and rings as three-
dimensional bodies subject to uniform and nonuniform temperature fields 
shows rapid convergence on coarse meshes [6, 64]. The results obtained for 
framed structures and revealed thermoelastic effects can be generalized to thin-
walled structures. It is supported by studies on plates and shells. 

After that, homogeneous and layered square plates under uniform pressure q 
are used as examples to determine the errors and possible limits of the elastic 
constants. 

4.1.1. Bending Clamped One-Layer Square Plate. For a clamped one-
layer isotropic plate, the central deflection converges rapidly if compared with 
the analytic solution [57]. Comparing the solution with those obtained with 
well-known software (LIRA, SCAD, FRONT, ANSYS, NASTRAN, 
COSMOS) and by other authors, we conclude that the solutions for rectangular 
plane FEs converge from "above" and the solutions for spatial FEs converge 
from "below". The same effect is revealed for an orthotropic plate. 

It is analyzed the accuracy of the central deflection for two-layer and three-
layer simply supported plates [64]. The results are compared with calculations 
in software SCAD, where it was used multilayer rectangular finite element 
№ 73 [66]. The multilayer FE is absent in software LIRA [65]. 

4.1.2. Bending Two-Layer Simply Supported Square Plate. We consider 
the two-layer plate, loaded pressure intensity 060.q  MPa. The central 
deflection of the plate has been compared to solutions obtained in the software 
SCAD, by the refined iteratively-analytical theory [21], by the experimental-
theoretical method [35] and with the experimental data [35] (Table 1). The 
input data: a size of the panel in the plan 30.a  m; the first layer (steel) – 
thickness 0.0003 m, elastic modulus 510032  .E MPa, Poisson’s ratio 
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30.v  ; the second layer (concrete) – thickness 0.0258 m, 
51006570  .E  MPa, 20.v  . The design model is a quarter of the panel. 

The calculation results of the central deflection of the plate w  obtained by 
different methods have been compared with the experimental data. The 
solution by MSFE and by SCAD converges rapidly. We conclude that the 
solutions for MSFE and the iteratively-analytical theory converge to the 
experimental data from"above" and the solutions for the experimental-
theoretical method and software SCAD converge from "below". The 
significant error is less 10%. 

Table 1 

Method 
of 

analysis 

MSFE, 
88 FEs 

SCAD, 
88 FEs 

Iteratively-
analytical 

[21] 

Experimental-
theoretical 

[35] 
Experimental 

[35] 

210w , m 0.0120 0.0109 0.0115 0.0102 0.0110 

 , % 9.10 -0.91 4.5 -7.3 0 

 
Acceptable results are obtained when the ratio of the elastic modules of two 

layers is equal to 31. This fact should be taken into account when deciding on 
the areas of possible application techniques. 

4.1.3. Bending Three-Layer Simply Supported Square Plate. We 
consider the three-layer plate [18], loaded pressure intensity 10.q  MPa. The 
input data: a size of the panel in the plan 27680.a  m; the 1st and 3rd layers 
are isotropic with thickness 0.001m, 41086  .E MPa, 30.v  , 

4106152  .G MPa; the 2nd layer is transversely isotropic with thickness 
0.015m, 410480  .E MPa, 30.v  , 4100380  .G MPa. The design model 
is a quarter of the panel. 

Table 2 

MSFE SCAD Method 
of 

analysis 1212 
FEs 

1616 
FEs 

1212 
FEs 

1616 
FEs 

Reissne
r Varvak 

Engine
-ering 
theory  

310w ,m 0.2354 0.2369 0.3469 0.3475 0.3160 0.3050 0.2160 

 , % -25.5 -25.0 9.78 9.97 0 -3.5 -31.6 
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The central deflection of the plate w  obtained by MSFE has been 
compared to analytical [18] Reissner’s (straight line hypothesis) and Varvak’s 
(tangential stresses and cross-sectional curvature are taken into account) 
solutions, to the solution produced by the engineering theory (straight normal 
hypothesis) and to software SCAD (Table 2). Benchmark is the solution 
obtained by Reissner’s theory. 

For MSFE and software SCAD refining the mesh from 12 12 FEs weakly 
corrects the solution (the significant error is respectively about 25 and 10%). 
The ratio of the elastic modules of material layers (carrier to a placeholder) is 
14.2, and the ratio of the shear modules is 68.8. These data should be taken into 
account when deciding on the areas of possible application of these techniques. 

The examples indicate a rough limit of applicability of the method, which 
corresponds to the well-known statement that the elastic constants of layers 
should not differ by more than one to two orders of magnitude. 

4.2. Solutions in Geometrically Nonlinear Problems of Buckling, and 
Postbuckling Behavior. Results of research of nonlinear deformation are 
considered by the example of a number of inhomogeneous isotropic shells. The 
accuracy of solutions of buckling problems is evaluated by comparing them 
with nonlinear solutions obtained by other authors and by software LIRA and 
SCAD [15, 17, 19, 30, 31], which used flat finite elements: triangular № 342 
and quadrangular № 344. 

"Absolutely rigid insert plates" [65, 68] and "absolutely rigid solids" 
[44, 66] are used when approximating the shell sections with ribs, channels and 
cavities, where FEs are joined eccentrically. 

4.2.1. A Spherical Panel with Square Planform and Constant 
Thickness. Panel is hinged along the contour and loaded with uniform normal 
pressure intensity q  [64]. Results are presented in terms of dimensionless 

parameters: 4 4( )q a q Eh , 1' 1'u u h . Curvature of the panel is defined by 

parameter 22 ( ) 32K a Rh  , where: 1h  cm is the thickness, ha 60  is a 
size of the panel in the plan, hR 225  is the radius of mid-surface, elastic 
modulus 61012  .E kg/cm 2 , Poisson’s ratio 30. . The FESM is a quarter 
of the panel with mesh 30 30 FEs. Comparison is made with the solution of 
[30] by the a “load – deflection” (“ uq  ”) curves at the center of the panel 
(Fig. 6,a). 

The problem has been solved by software LIRA and software SCAD with 
using its three non-linear algorithms. The upper critical load up

crq  obtained by 
software LIRA is in good agreement with the solution [49]: for two variants of 
the method of successive loadings (SL) discrepancy is less than 3%, the 
method Newton–Raphson (N–R) gives error -1.8%. This problem with the 
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software SCAD has been solved by the method Newton–Kantorovich (N–K) 
and by the method Newton–Raphson (errors -4.9%). Disagreement with the 
solution by MFES is -3.15%. Equilibrium configurations for the deformed 
panel in the prebuckling and postbuckling domains for all solutions have a 
simple form and are in good agreement with each other (Fig. 6,b). 

     

а                                                                      б 
Fig. 6 

 
4.2.2. Shells with Linearly Varying Thickness. The effect on the buckling 

of the shallow spherical panels of linear variation in the thickness along the 
meridian is examined, in order to find rational laws of distribution of the 
material in the volume of construction [61,64]. Shell of revolution clamped at 
the edge and subjected to uniform normal pressure (Fig. 7,а). The input data: 
rise 050.H  m, radius of mid-surface 02510.R  m, radius of support 
boundary 1a m, “base” thickness 010.h*  m, 419.6 10E  MPa,  = 0.3. 

 
а 

                
                                b                                                                          c 

Fig. 7 
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In general form, we represent the law of linear distribution of thickness 
along the meridian panel by its thickness in the center =0rh  and at the edge 

=1rh : 0 1 0( )= ( )r r rh r h h h r    , where r r a . We examine three laws of 
linear variation in the thickness )(rh  (Fig. 7,b,c; type of variable thickness is 
indicated by the appropriate icon): 
1)  *( ) 1 ( 1)oh r h b r   ; 2)  *( ) 1 ( 1) (1 )ah r h b r    ; 3) *( ) Vh r h b , where 

1 0o r rb h h  , 0 1a r rb h h  , *
V Vb h h  are parameters characterizing the 

degree of linear variation in the thickness. The value 1o a Vb b b    

corresponds to a panel of constant “base” thickness *h . The thickness Vh  is 
determined from the volume of a panel V : (2 )Vh V HR  . 
 

  
a b 

  
c d 

Fig. 8 
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Consider shells characterizing by equal volumes V  with appropriate 
parameters ob , ab , Vb . Solutions obtained by MFES [60,61,64] are compared 
with those obtained by software LIRA and SCAD. The results are presented in 
dimensionless form: 4 4( )q a q Eh , 1' 1'u u h , ( ) ( )h r h r h . Comparing 
the results reveals complete agreement between the “ q u ”curves in the 
prebuckling domain and in the area of the upper critical point for all solutions 
(Fig. 8). 

4.2.3. Faceted Panels of Stepwise-Varying Thickness. Consider faceted 
shells formed from the above smooth spherical panels with thickness linearly 
varying [61,64]. The mid-surface of the spherical shell of revolution is 
represented by a faceted surface inscribed in it and having 16 flat faces ( 44  
for a quarter of the shell, Fig. 9,а). The linearly varying thickness ( )h r  is 

replaced by close stepwise-varying thickness ih  (Fig. 9,b) according to the 
range of steel sheets [67] with a permissible in engineering calculations 
difference of the volumes of these shells (-4.3…+0.2%). 

 

 
a 

 
b 
 

  
c 

Fig. 9 
 
Nonlinear solutions obtained by MFES are compared with those obtained 

by software LIRA and SCAD for shells in rational manners [64], which are 
thicker in the middle. We compare faceted shells with a compound by the mid-
surface faces for parameters thickness ob = 0.55, 1 and ab = 1, 2, 4 (Fig. 9,c). 
We observe well agreement between the “ q u ” curves in the prebuckling 
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domain (Fig. 10). At the branching point for panels with parameters ob =0.55 
and ob = ab =1 difference the load is respectively -0.18 and +1.98%, and for 

deflections it is +1.01 and +3.5%. The upper critical load up
crq  is in good 

agreement for panels with parameters ab =2 and 4 (divergence is within -1.91 
and 4.17%). At the Fig. 10 to assess the effect faceted, dotted line is shown the 
solutions obtained by MFES for smooth panel linearly variable thickness. 

 

  

Fig. 10 
 
4.2.4. Ribbed Panels with Square Planform. Investigation of the stability 

of rib-reinforced shells [61,64] is presented by the example of deep spherical panel 
square in plan ( 64K  , 120a h , 450R h ), hinged at the edges, and subject to 
uniform normal pressure (Fig. 11 and 12). Two variants of the shells reinforced 
ribs from inside (height 3рh h  and width 2рb h ) is considered: (i) with two 

central cross-ribs (with mesh 2121 FEs) and (ii) with four pairs of equally 
spaced cross-ribs (with mesh 2222 FEs). 

Solutions obtained by MFES and software LIRA are compared with those 
obtained by Il’in & Karpov [30]. The “ q u ” curves are analyzed: for the first 
variant (i) at the point "o" (Fig. 11,a) and at the point "b" (Fig. 11,b), and for the 
second variant (ii) at the center of the shell (Fig. 12,a). For comparison, the dashed-
dotted line shows the solution for the smooth panel ( 0ph  ). 

The solutions to the first problem (i) obtained by MFES and software LIRA are 
in good agreement for the “ q u ” curves in the prebuckling domain and at the 

moment of loss of stability (Fig. 11). The difference between the values of up
crq  for 

the solution [30] and by MFES is less than 0.5%, the difference for these by 
MFES and by software LIRA is 1.1%. 
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a 

 
b 

Fig. 11 
 
The solutions to the second problem (ii), for the panel reinforced with either 

ribs, are in good agreement on all sections of the “ q u ” curve. The difference 

between the values of up
crq  for the solution [30] and by MFES is -3.8%, the 

difference for these by MFES and by software LIRA is 7.7%. 
Configurations for the deformed panel in the prebuckling (1) and 

postbuckling (2) domains for all solutions have a simple form and are in good 
agreement with each other (Fig. 12,b). 

 
 
 
 
 
 
 



ISSN 0132-1471. Опір матеріалів і теорія споруд. 2014. № 92                        139 
 

 

 
a 

 
b 

Fig. 12 

 
4.2.5. Panels of Square Planform with Channels and Cavities. 

Investigation of the buckling of shells by channels and cavities is presented by the 
example of a shallow spherical panel square in plan with 32K  [61,64]. It is 
considered a shell with two variants of non-through weakens: (i) four identical 
cross channels (width hbch 2  and depth h.hch 30 ); (ii) four square cavities 
(width hbcv 6  and depth 0.7cvh h ). Three cases of eccentric arrangement of 
channels and cavities respect to the casing mid-surface are compared (Fig. 13). 
Each case of the eccentricity is indicated by the appropriate icon. The FESM is a 
quarter of the panel with mesh 30 30 FEs. 

In all cases, solutions obtained by MFES and software LIRA coincide 
completely in the prebuckling domain and in the domain of the upper critical 
load (Fig. 13). There is good agreement for the results obtained by MFES, 
software LIRA and Karpov [30] for panels weakened from inside 
(Fig. 13, a, d). For these panels, the results obtained by software SCAD differ 
substantially compared with the results of [30] (the error -13.39 and -11.98%), 
and with the results by MFES (the error -12.03 and -8.61%). 
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a d 

  
b e 

  
c f 

Fig. 13 
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There is good agreement between the solutions obtained by MFES, software 
LIRA and SCAD for shells without eccentric arrangement of channels and 
cavities (Fig. 13, b, e). The difference of the results is less than 1%. 

4.2.6. Shells under Combined Action of Force and Temperature Fields. 
When there are both temperature and force fields, the nonlinear solutions have 
been analyzed by examples axisymmetric conical panel and square in terms of 
spherical panel with a hole for a clamped shallow conical round panel in terms 
[64]. We take into account by MFES and software LIRA that effect of the 
thermomechanical load occurs in two stages. We have been taken into account 
by MFES and software LIRA that effect of the thermomechanical load occurs 
in two stages. At the first stage the shell is gradually heated by the temperature 
field whose parameter t  increases from C0  to a set value CT . At the 
second stage the panel is subjected to uniform normal pressure in addition. 

4.2.6.1. Axisymmetric Conical Panel. A clamped shallow conical panel 
with the radius of support boundary ha 100  and rise hH 3  is considered 
(Figs. 14). At the first stage of the 
loading the shell is heated to a set value 

C20  [31]. The input data: 010.h  m, 
410619  .E MPa,  = 0.3, linear 

expansion coefficient 
14101250  deg. . Results are 

presented in terms of dimensionless 
parameters: hHk  , 2)( hatt  . 
The design model is a quarter of the panel with mesh 20 40 FEs. Solutions by 
[31], MFES, and software LIRA are compared. 

The considered methods have good agreement the “ uq  ” curves 
(Fig. 15,a) and forms of deformation (Fig. 15,b) at all stages of loading. In the 
area of the upper critical load there is a discrepancy regarding the solution by 
MFES: the difference between the values of up

crq  for software LIRA is 10.8%, 
and for [31] it is -3.6%. 

4.2.6.2. Panel of Square Planform with Hole. A shallow spherical panel 
( 32K  , 60a h ) hinged at the edges and having a central square hole (width 

12hb h ) is considered. The input data: 0.01h m, 420.59 10E    MPa,  = 0.3, 
4 10.12 10 deg   . The design model is a quarter of the panel with mesh 

30 30 FEs. The effect of three cases preheating by 20 ,0 ,20 CT      on the 
stability of the shell is considered. 

 

 

 
Fig. 14 
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a b 

Fig. 15 
 
Fig. 16,a shows a comparison of the “ uq  ” curves obtained by MSFE, 

software LIRA and in [31] for shells without hole ( ) and with hole ( ) 
when their loading only pressure ( 0 CT   ). For the panel without hole the 
deflection have been considered at its center. For the panels without hole the 
deflection have been considered at its center. Comparing the results by MFES 
and software LIRA reveals agreement between the “ uq  ” curves in the 
prebuckling domain and when loss of stability: the difference between the 
values of up

crq  is respectively -1.9% and 2.9%. In the area of the upper critical 
load there is a divergence of the “ uq  ” curves obtained by MSFE, software 

LIRA and in [30]: the difference between the values of up
crq  by MFES and [30] 

is respectively 3.3 % and -9.9%. 
 

  
a b 

Fig. 16 
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For all cases of preheating there is agreement between the “ uq  ” curves 
in all domains of solutions by MFES and software LIRA (Fig. 16,b). The 
difference between the values of up

crq  is within 3.0 – 3.5%, and this for the 

deflection up
cru1  at the point A  is within 0.3 – 4.1 %. 

Configurations for the deformed 
panel after pre-cooling to C20T  
(Fig. 17,a) and preheating to 

C20T  (Fig. 17,b) are in good 
agreement with each other and have 
little difference from the original form 
( C0T , q =0). Buckling forms are 
in good agreement too. Buckling of the 
shell occurs with click of its central 
part (Fig. 17,c). 

Conclusions 
We have developed a finite-element 

method to analyze thin-walled shell 
structures. The method employs, for all 
structural elements of an 
inhomogeneous shell, the 
geometrically nonlinear equations of 
the three-dimensional theory of 
thermoelasticity taking into account all 
nonlinear terms and components of the 
strain and stress tensors. Use was also 
made of the moment finite-element 
scheme extended to nonlinear 
thermoelasticity of thin inhomogeneous 
shells. 

We have developed a unified model 
based on the universal spatial FE that 
describes the multilayer structure of a 
material and geometrical features of 
structural elements of an 
inhomogeneous shell: casing of 
varying thickness, ribs, cover plates, 
cavities, channels, holes, sharp bends of the mid-surface. 

a 

b 

 
c 

Fig. 17 
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We have developed an efficient iterative algorithm for solving problems of 
nonlinear deformation, buckling, and postbuckling behavior of thin 
inhomogeneous shells under thermomechanical loading. 

The reliability of linear and nonlinear solutions for a wide class of 
inhomogeneous shells has been numerically justified by analyzing their 
convergence and comparing with those obtained by other authors and by 
software LIRA and SCAD. 
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Баженов В.А., Соловей М.О., Кривенко О.П. 
МОДЕЛЮВАННЯ НЕЛІНІЙНОГО ДЕФОРМУВАННЯ ТА ВТРАТИ СТІЙКОСТІ 
ПРУЖНИХ НЕОДНОРІДНИХ ОБОЛОНОК 

Викладено основи метода розв'язування статичних задач геометрично нелінійного 
деформування, стійкості та закритичної поведінки тонких пружних неоднорідних оболонок, 
що мають складну форму серединної поверхні, геометричні особливості за товщиною, 
багатошарову структуру матеріалу та знаходяться в умовах складного термосилового 
навантаження. Підхід базується на геометрично нелінійних співвідношеннях тривимірної теорії 
термопружності та використанні моментної схеми скінченних елементів. Дано чисельне 
обґрунтування метода. Виконано порівняння розв'язків с розв'язками інших авторів і в 
програмних комплексах ЛІРА, SCAD 

Ключові слова: геометрично нелінійне деформування, стійкість, тонка пружна 
неоднорідна оболонка, термосилове навантаження. 
 
 
Баженов В.А., Соловей Н.А., Кривенко О.П. 
МОДЕЛИРОВАНИЕ НЕЛИНЕЙНОГО ДЕФОРМИРОВАНИЯ И ПОТЕРИ 
УСТОЙЧИВОСТИ УПРУГИХ НЕОДНОРОДНЫХ ОБОЛОЧЕК 

Изложены основы метода решения статических задач геометрически нелинейного 
деформирования, устойчивости и закритического поведения тонких упругих неоднородных 
оболочек, имеющих сложную форму срединной поверхности, геометрические особенности 
по толщине, многослойную структуру материала и находятся в условиях сложного 
термосилового нагружения. Подход основан на геометрически нелинейных соотношениях 
трехмерной теории термоупругости и использовании моментной схемы конечных элементов. 
Дано численное обоснование метода. Выполнено сравнение решений с решениями других 
авторов и в программных комплексах ЛИРА, SCAD. 

Ключевые слова: геометрически нелинейное деформирование, устойчивость, тонкая 
упругая неоднородная оболочка, термосиловая нагрузка. 


