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Summary. In this paper, a new combined method of reducing dimensions of spatial
thermoelasticity problems was proposed; based on the “method of lines”, combined with Bubnov-
Galerkin-Petrov's projection method which significantly expands its capabilities. The generalized
“method of lines” can be used for plates of variable thickness, in problems of dynamics and
thermoelasticity. The basic idea is to reduce the dimension of the spatial coordinates using the
projection method, with a system of basis functions. This article is the first part of the work. It shows
the reduced differential equations and proposes a new way of modeling boundary conditions.

Key words: “ metod of lines”, method Bubnov—Galerkin—Petrov thermoelasticity, thick plates, struc-
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lowering the dimension creates a combined

INTRODUCTION method for solving problems of mathematical

physics. Such methods include Vlasov—

One of the most effective methods oKantorovich’s method. These combined

solving multidimensional problems of strucmethods are alternative, compared to the

tural mechanics is the combination approaceneral numerical methods such as finite
In this approach a problem is solved in tw@lement method, finite difference and varia-

stages: tion—difference method.

1) decreasing the dimension of the input Mathematical methods of lowering di-

equations by one or two coordinates; mensionality are associated with the geomet-

2) the reduced problem is solved anafical characteristics of the considered objects.
lytically or numerically. It greatly res'trlcts'the geometry of the prob-
Traditionally in  structural mechanics,lems’ for which it is possible to use the com-

lowering dimensionality of input equations iéjme.d methods. However, limiting the com-
based on certain hypotheses. Accordingl _'Iexny of the geometry allqws the applica-
the first stage of the method was excluded e of very efficient numerical m?FhOdS' It
a separate researctheory of rods, plates Increases the accuracy and stability of nu-

and, shells. Applied hypotheses were Stroﬁ(‘erical calculation. It also significantly re-

enough but less accurate. It lead to creati (é)ens co:{n?#te[(gmenu?sgteﬁ ds of lowerin
of various theories of plates and shells. € ot the know €noas ot fowerng

- : : L _dimensionality input equations is the
Currently, lowering dimensionality is per "method of lines". In this method, the finite

formed using mathematical methods (for exs. .
ample, the theory of shells I.N.Vekua [19])d|fference method is used for one of the two

With the next soiution of reduced equationsc,oord'nates' This method will be effective, if
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the input equations are systems of ordinamgver, in order to reduce dimensionality, we
differential equations. In the case of constamlo not use method of finite differences, but
coefficients in these equations, it is possibllhe generalized method of Bubnov—
to use analytical solution of system of equasalerkin—Petrov. By coordinatg the un-
tions (Vinokurov [20], Shkelov L.T. [13]). In known functions f (X, y) is approximated in
this regard, the “method of lines” is used fothis manner:

the solution of static problems for plates and

Sh?_':’ls of constant thickness. . f (X, y) =~ f! (X)(Pi (y) 4 (1)

e authors proposed a new version of
lowering dimensionality in the application of
the method of lines. It is greatly expandin%.
the capabilities of “method of lines”. !

The constructed algorithm of lowering
mensionality formally resembles algebraic
transformations of tensor calculus. In this
connection, the generalized method of lines
essentially tensor symbols and relevant rules
are used. For example, by repeated indexes is
To generalize the “method of lines” anoassumgd summation. Resqlving equations
according to Bubnov—Galerkin method, after

its implementation in the solution of ther- bstitutin roximate rat f the form
moelasticity problems, dynamics and transf sttuting approXimaté ratios of the 1o
1) are scalar multiplied in Hilbert space for

to three dimensional equations. , )
basic functionsp, (y) .

The proposed generalized “method of It should be noted that in Bubnov-
lines” may be used for calculating the plateSalerkin method, basis functions must satisfy
of variable thickness, and also problems dhe homogeneous boundary conditions per
dynamics. The basic idea of generalize@OOl’dinatQ/. These basis functions do not
“method of lines”is lowering the dimension- satisfy such conditions. However, according
ality of input equations per the spatial coorto the generalization of Petrov [9] it is
dinate by projection method. The projectioenough that these functions satisfy natural
method includes the Bubnov—Galerkirboundary conditions. It should be noted that
method, generalized by Petrov [9]. in the construction of reduced equations for

In the case of thick plates with constanintensive unknowns (displacement in the the-
thickness for equations of plate deformationsry of elasticity) and extensive unknowns
per thickness, locally basic restricted discret@tresses) transformation of corresponding

AIM OF WORK

linear functions are chosen (Fig. 1.). components is performed differently. Here-
with we get two basic matricesG and B,
y which are recorded in an index form as:
do. .
. 1 9; = (¢, 9;), b = ((Pi'i)- This is the sca-
Al 1 dy
d 5 | ¥° lar product of two functions:
h 1 Q4
1 Qs "
1 (P2 . y
o L | X @.9)) = [ o, ()0, (y)d. 2
0
Fig. 1. Basis functions Conversion of components with derivative

y of the functionn — type displacement and
stresses—type functions is formed in different
Q/vays. This is the use of lowering the dimen-
sion of a plane problem using the theory of
elasticity:

12

As in the traditional version of the
“method of lines”, a cross—section of th
plate is divided inton lines (including two
boundary lines) with an equal rangeHow-
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tudes appear in the decomposition by basis

au(x, y) (Fig. 1.), they are called coefficients. Covari-
(T’ ¢, (Y) = ant magnitudes appear as a scalar product of
| the basis elements:
= J. aug; y)(Pi (y)dy = h,
. @ =0 = [ f(x Yo (V).
_ o ()9, (y) _ 0
== ey =
0 y they are called — moments.
N . Therefore, reduced equations can be writ-
:UJ(X)I@i(Y)(P'j(Y)dy:hiuj(X)’ ten in four ways:
0 - in moments, if displacement and stresses
in the moments,
00, (X, y) _ - in coefficients, if all unknowns are writ-
( 3 0 (Y)) : -
y ten in coefficients,
Y g (x.y) - two versions of combined record: dis-
=JX—’cpi(y)dy= placement in the moments, stresses in the
o 0y (4) coefficients or displacement in coefficient,
h, , stresses in the moments.
=0, (% V)i (y) l‘JGx(X’ y)oi(y)dy = After formulating the construction equa-
° tions, we need to formulate the reduced
= (0. (x. ), (hy) =0, (%, 0),(0)) = boundary value and initial — boundary value
—b;0,’ (), problem in index form.

The described technique can be applied to
solve the problem of thermal stresses in a rod
o _ _ _of rectangular cross—section (Fig. 2.), which

The peCU“arlty of this functional basis Occupies a three—dimensional region:
that thIS. basis is not Qrthogonal, and thuﬁ)s x<I]x[0<y<h]x0<z<h].
there exist two types of index valuet, and

f,. These magnitudes are different by rule

of conversion at transition on another basi:
Contravariant magnitudes denoted by upp:
index and covariant magnitudeslower in-

dex. Accordingly,{ gij} — two indexes mag-

{bji} IS a transpose matrix éhj} .

Z

nitude is twice covariant metric tensor an

. . _1_ ij . .
the inverse matrlx{ gij} —{g} is twice
contravariant metric tensor. Metric tenso.

provides a transition from covariant to con-

travariant components and vice versa: Fig. 2. Beam of rectangular cross section

fi=g;f' f'=9"f,. (5)  The problem about thermal stresses is
considered within limits of an important par-
The scalar product in this case is the intdition of the theory of elasticity — thermoelas-
gral of multiplication of functional factors. tiCity [6, 7]. In this problem we consider two
Therefore in mathematics, covariant and corphysical fields — thermal and mechanical.
travariant function magnitudes have an iden- Thermal field in solids is described by the
tified name. Because the covariant magnthermal conductivity equation. In the most

13
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general form, thermal field depends not only

on three spatial coordinates but also on timghen x=1:

coordinates. The corresponding problem in

determining the component of thermal field a.(,y,zt)=a (T -TL)+

is described by the equations of non- | ¢

stationary thermal conductivity. Components (L y,z).

depend on the time coordinate. As a system

of differential equations in partial derivatives The temperatures and heat flows of exter-
of the first order in the spatial and time coorf@l environment from the side of relevant
dinates, these equations are written in tHeart of boundary surface of beam are marked

form: as“C™
h =0:
o 299, 9% 09, wheny
ot ox oy o0z
L aT q,(x,0,z,t)=—al (T,(x,0,z,t)-
Q T X ©) —T,(%,0,z,t))-q, (x,021),
g, =1 2 o ®)
oy wheny=h :
oT
qZ :_XT_ _ hy
0z q,(x,h,,z,t) =a; (T (X% h,zt)-
Te(xh, zt)+a,. (xh, .2 1),

where: T =T(X, y, z) — temperature function,
g, d,, 9, — components of the heat fluxvhen z=0:

d(x, vy, z), — density of the materiak —
ax v.2), p y of C = g (% y,04) =—a (T,(x, v, 0,t)-
specific heat, A, — coefficient of thermal

_TZC (X’ y107t ))_qzc (X’leI )a

conductivity, Q — the quantity of heat gener- 9)

ated by internal heat sources. h .
To ensure unity of solution of the systen¥v enz=h,:
(6) we need to specify the initial and bound-
ary conditions. The initial conditions are in q,(x,y,h,,t) =aX (T (X, y,hz,t)—}

the form: T (X y,h, 1) +a. (x,y,h, ).

t=0, Tlx,y,2)=T, &x,y,2), In the next numerical calculations, such

~ form of boundary conditions allows to take
where: Ty(x, y, z) — temperature distribution into account the relevant part of surface

throughout the volume of the body at the iniboundary conditions of first ordes, — oo

tial time. N and second ordet, - 0.
The boundary conditions of the problem Changing temperature of solid body in

will be set as conditions of convective hea[t . _
transfer. ime practically does not cause dynamic ef-

fects. Therefore, mechanical fields (dis-
placement, stress and strain fields) are sta-

When x=0: tionary and are described by static equations.
o6 <o @) These equations are written as equations
0(0,y,z,t) =0, (Tye T, )_} in partial derivatives of first order:
_qu(O'y!Z!t)’

14
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aGX =_arxy _aTXZ -X (10) 1 0 ko o+
ooy oz B R ) A BN
0
ot Jo, Ot (11) + 10 > (x)x i S 320,
v = 2 _Te_y, 0 ¥ )
0Xx oy 0z
aTXZ - _aTyZ _0(52 —Z, (12) 1 kO
X oy 0z VO +
L+ (KS) g J1+(k° (20)
o’ M AoV 1 Ko 0_
ax (7»+2u) Termay | azy Q) " J1+(k3y)2
X A
(vt 2u) az (A +2u) o o 1 © kS et
Jl+(kfZ J1+(k (21)
ﬂ:r —ﬂ (14) + 1 qo + k>(<)Z e
ox ¥ ooy R () SR B (Ch B
ow _ - _ou (15) Whenx=1:
ox ¢ o0z

1 | kl I
The equations can be separately consid-— 2 BE +
ered: Jl+ (Ko J“ (ke (22)

1 I I
+ =0
_AOU (2w v, Ay «/1+(k' :

Gy

poOox poooy (16)

+&6W* — (3}‘+2H) (XT(T _To)l 1 | kl I +
w 0z u J1+(k' 2 J1+ (K.,)? (23)
o kO AN /1+(k' /1+(k' 7V =0
poox poy (17)
N (A+2p)ow (31 +2p) o, (T=T,)

u 0z

«/1+(k' o «/1+(k' )2 (24)

ow @ 18) + a, V\/C=O,
Ty, = (a—\z a_vzj (18) ¢1+(k'xz J1+(k'

where: f°=1(0,y,2), f'=1(,y,2).

Boundary conditions of stress—strain state [°' _construction of the boundary condi-

in general are written by the analogy of worklons (19) — (24) we write the sum of projec-
[16]. tions of all power factors that act on the

-n- boundary contour, on corresponding axis. In
When x=0: . :
X (Fig. 3.) on the planexOy, the magnitudes

which act on arex= @re shown.

where: f* =pf .
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The first index— signifies thenumber of of (x,Y,z,1)
the axis which is perpendicular to the area. (T
The second index shows the direction of dis-
placement or stress.

’(Pi(Y)j =

= [FL2 g (y)ay =
0 X

N 0
=— f X, ,Z,t i d = f X) Z!t .
x| FO0Y 200 )y =5 x 2)

Where f is a factor of stress, then

(—‘” (Xéy’z’”.wi(y)}
y
= [LONZD  (ay = 1 x,y, 2%

oy

0

hy h,
| , 5 xp () | = [ 0y, 2t)0i(y) =
Fig. 3. Modeling of the boundary conditions: I

u,, Vv, — displacement of points of the external = f(xh,,z,t)e (h) - f(x0,z,t), (0)-
environment;

hy
U,V — horizontal and vertical displacement of _J‘ f1(x,z,t)o. (Y)o!(y)dy =
points of object; 0 : '
O O, —€Xternal load on object; =30 (x,2,t) - L ' (x, Z,t) -

o, T,, —hormal and tangential (shear) stresses

along the contour inside the object;
K K,, —spring stiffness

-b, g™ f,(x,Z,1).

When f is a factor of temperature and

By changing stiffness we can specify an)c}llsplacement'(,u,v,w), then

standard conditions of interaction of the ob-

ject with the external environment. of (x,y,z,t) _ " of (x,y,zt )x
For Eg. (6) — (24) the procedure of lower- ay i (Y) _I oy

ing dimension is performed by coordinates ot °

. _ . . _ y X, Z,t )
Y, 2. At first r_eductlon byy. B.a5|c func X<Pi(y)dy=j ( )(P’(y)cpi(y)dy:
tions are applied ¢ =¢,(y)}, i=1,..,n, 5 oy
where the following rules are taken into ac- hy _
count: = [o,(V)o} (M (x 2 t)dy =

0
f(xy,zt)=f X,z (Y); =h;g" f,(x,z,1).

hy The first equation of system (6) is multiplied
(f(xy,z,t),0,(y) = jf(x, y,z,t)p,(y)dy=| as a scalar by¢f =¢,(y)}, wherei =1,...n,
0

and than integrated by coordingte
= f.(x,zt);

16



APPLICATION OF GENERALIZED “METHOD OF LINES”, FOR SOLVING PROBLEMS
OF THERMOELASTICITY OF THICK PLATES

((aqx + aqy + aqz _pca_T+ [Sa%yﬁu_g:‘[’ﬂ%yﬁu] =
ox oy 0z ot o T
=[a%TY 0 - 0 aXT3| -
+Q(x, Y, 2,t)) =0, ¢,(¥)), [ T5 5] :
) . . - OT 10 0O --- 0 hYT no +
%+Salﬁyl(x, )-8y, (x zt)-| (25 [0 Teh Oyr yCEkT]
+[qu$ 0 . 0 _qycgﬂ
ja 0q, T,
_bjig qy(l(XIZ!t)+ aZ _pCE
+Q (% 2,)=0. (8750, -8, ] =

— 0 a
- |:O'ZTTzi 0

In the next step — we perform the reduc-
tion by 2 of equation (25):

dq, niy i i
(%Hi[ﬁqy (x,z,t) =838, (%, z,t) -
oT,
c—L+

ot

The substituti
jou aqz
—b;9"q,, (X, Z’t)"'_az -p

+Q (X zt) = 0,9,(2)),

[a‘;TTy;F 0

[agTTyC%,E 0

0q, Ny i i
—+[ 850,500 -80,, (1) ] -
-b;g jaqyak (x,t)+ [qycﬁf 0
+ 850,500 =85, (x.t) ] - (26)
_bpk 970, (X%, t) = [GSTTZ?D 0
o o
—pcﬂ +Q, (x,t) =0, I:azTTzCi o O
ot
here: [qm:él? 0
noy i i — nO]|"
[SH%‘yEE - S%H%Iyﬂf} - [_qyél:(] 0 0 qukD
" : T
[SD(%IZ% - SJﬁB(DqZ%} - [_qz:JD 0 0 Z:]S

00, +

n — number of lines along the axys, m — 5
X

number of lines along the ax®. {
Indexesi, j,a,B,y — are related to reduc- .
tion by coordinatey, indexesk, p,s,& ¢ — ~0;9" 0y *
reduction by coordinate .
Taking into account the boundary condi-
tions (8) — (9):

|

_bpk g psqzis

17

_I:a‘gTTzCiElD 0 -

+|:qzCiElD 0o -

giaTayak - gksTCyiE +
+g'

T
0 - 0 T -

.
h
0 0Ty D:‘ +

T

0 _qzciDhD1
on:

0 a';YrTya(D]T =
=Tay$,

0 Wyt =| @)
=TC,4,

T .
nO —_ ig
0 _quEIk - qu[Ik '

T
— k
- Tazi o

:}, (28)

— . X
=0cin-

0 ofTm]
0 aZZTTzc:]S]T
=TC,*

0 _qzcgku}T

Taking into account the boundary condi-
tions (27), (28) in Eqg. (26):

gkgTaZis - gim-l-c:zmk +:| -

+9°0,g;,

o
quak

(29)

oT.
_Pca_t'k"'Qlk =0
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Similarly, the reduction of remaining dog _ i« s
equations of system (6) is done: ax =05 9" Ty + 09 T —
n |D_ g i0|_
0 = T 0 [5 Ty~ Oty (37)
Xlk ax [6 ch k 61[] ]_ Xik,
Oy = ~ArD; 9" T (X 1), (31)
O = ~ArBe 9 g™ T (X.t). (32)
_ A jo 4(h+p)
Substituting (30) — (32) in (29), Eq. (33) |s ijig %ﬁwx
formed: dx H H
xb j(‘l. BYV* ]“
car {g‘aTayak-gkchy“ ﬁ i B GV i A+ 2u b9
- e+ _ +
T oax? +gmquuk xl:h(pgpsjlw* Mb g (38)
+7‘Tbj|gjungBYT + (33) )\’+2
- Eey/!
+|:ngT0'zi£ _giaTCzuk +g qzCis]+ X(Tak Toak)+bpkg bs‘;g Vis +
+ gps 'gl“ W*as_
+1.b,. 9% b, g~T, —pCaT +Q, =0 [ i ] [Q }
ot —[§nts |D —§ 1D
[ o o y[lk}
The reduced initial conditions will look like [agﬂrm—sﬁkﬂrﬂfg]—xk
T (%,0) = Tg ().
The next step is the reduction of equations
of system (10) — (15). In this system, the dr,, A s A(\+p)
process of reduction expressions are substq- Ati 9 6Xi5+7\.+—2},lx
tuted for 6,,0,,7, (16) — (18), using the .
. - . S Eeva S
above mentloned operations: xb, 9%b. g% W, + "t on [bpkgp ]x
\ 39
duik _ n A x[b,gj“]v* —Ma b, g™ x (39)
= Gxik - bI X 1j as A+2 T ~pk
dx (A+2u) (A+2u) H
0 x x XT' _Tis + b'i ] x » V*as+
X'V o — b9 Wis + (34) ( o) [ 9 } [bkpg ] _
@ 2; 2u) +b,9"b,,0"W [S“Dc 'D—Smcyz'ﬂ—
ﬂ — m Elk _s1
* ()L+2p) aT(Tik Oik)’ [8 % 5 GZID} Zik
dvi _ -b,9"U"w, (35)  The reduced boundary conditions of
dx stress—strain state will look like:
dw ik _ ps, * ko
X T ik —bkpg Uis, (36) u o *ko
X 1+ (KS)? J1+(k° 2
(40)

U 0 K 0 _
+ * qxxi + uci -
N ST () S

18
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I R T N
/1+ (k)(()y)z xyik 1+ (kgy)z ik
kO
U 0 Xy 0 _
+ quik ck — O’
1+ (kg,)? 1+ (ky,)?
l”l' 0 —_ k)?Z W*O +
1+ (k0?7 k)

+ 3 0_ k)?z *Q —
\/1+ (kgz)z xzik X/1+ (k)?z)z cik ’
_ U I k>|<x ul+

1+ (k)2 " Lk
| [ kk 1=

+ 1+ (k)l(x)z QXXIk + 1+ (k)l(x)z ucik - O;
- B T - k>|<y v+

Xyi i
L (KL)? 1+ (KL)?
+ M e s 1. =0,
1+(ky)” (k)T
- “’ ,[l = k)I(Z | +
O R Y (S Ll
u [ k)l(z W

+ . =

X/1+ (k)l(z)z qxzuk X/1+ (k:(z)z cik

The next step- the problem numerically

Is simulated using the method of discrete o
thogonalization by S.K.Hodunov [4]. Differ-
ential equations in partial derivatives ar
solved using the method of Runge—Kuttag.
Merson. This problem is programmed by the
Fortran programming language. Dependina

2. The problem of setting boundary func-

tion is solved and this allows the solution of
problem of dynamics and thermoelasticity.
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