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Abstract. Chaotic vibrations of dynamical systems and their routes to chaos are interesting and
investigated subjects in nonlinear dynamics. Particularly the routes to chaos in non-smooth
dynamical systems are of the special scientists’ interest. In this paper we study quasiperiodic route to
chaos in nonlinear non-smooth discontinuous 2-DOF vibroimpact system. The break-down of
invariant torus or of the closed curve occurs just under the quasiperiodic route to chaos. Is it route to
crisis? In narrow frequency range different oscillatory regimes have succeeded each other many
times under very small control parameter varying. There were periodic subharmonic regimes —
chatters, quasiperiodic, and chaotic regimes, the zones of prechaotic and postchaotic motion. The
hysteresis effects (jump phenomena) occurred for increasing and decreasing frequencies. The
observed chaos was the transient one.The chaoticity of obtained regime has been confirmed by
typical views of Poincaré map and Fourier spectrum, by the positive value of the largest Lyapunov
exponent, and by the fractal structure of Poincaré map. These investigations confirm the theory by
Newhouse, Ruelle, and Takens who suggested a new bifurcation scenario where a periodic solution
produces subsequently a torus and then a strange attractor.
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1. Introduction

Nonlinear dynamics is relatively young science. It has begun to develop
rapidly only at the end of 20-t/ century. One of the most interesting and explored
subjects on nonlinear dynamics are the chaotic vibrations. The routes of
dynamical systems to chaos are of the special scientists’ interest. There are many
papers, monographs and textbooks about dynamic behaviour in general and
routes to chaos in particular in nonlinear systems [1-6].

Just deterministic chaos is not the exceptional regime of dynamical system
behaviour. On the contrary such regimes are observed in many dynamical systems
in mathematics, physics, mechanics, biology, medicine. Recent such investigations
appear in economics and sociology more and more often. For example Professor
D. Volchenkov (Texas Tech University) is doctor of sciencies, expert on
theoretical physics, mathematics, and nonlinear dynamics. He is editor in chief of
International Journal “Discontinuity, Nonlinearity, and Complexity”. Nevertheless
at present his studies devote to sociology problems [7, 8].

Therefore the investigations on nonlinear dynamics in general and on chaotic
dynamics in particular are one of the arterial ways in the contemporary natural
science development.
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The term crisis was one of the new words coined by C. Grebodgi et al. [9]. It
is used to denote a sudden change in the chaotic state when some system
parameter is changed. For example a system initially in a chaotic state may
suddenly become periodic. Or chaotic motion which was originally confirmed to
a limited range of x(#) may suddenly expand to a broad range x(¢).

It is known that the studying of non-smooth dynamical systems with
discontinuous right-hand side has some difficulties. So dynamical processes in
non-smooth systems are studied less. In works [10,11] authors divide non-
smooth discontinuous dynamical systems into three types according to their
degree of discontinuity. There are among them Fillipov systems and the
impacting systems with velocity reversals. Moreover the systems with impacts
between its elements have the grossest form of nonlinearity and the non-
smoothness. Many new phenomena unique to non-smooth systems are observed
under variation of system parameters. Recently the investigations of such
systems are developed rapidly. Especially systems with impacts are of the
particular interest for scientists. Exactly in such systems the discontinuous
dangerous bifurcations are arising under system parameters variation. Just such
hard bifurcations can portend the crisis.

Vibroimpact system is strongly nonlinear non-smooth one; the set of
differential equations of motion contains the discontinuous right-hand side. The
studying of vibroimpact system dynamic behaviour both in general and for
concrete system is of the special interest. In particular the routes to chaos in such
systems also are of the special interest. It is well known that completely
deterministic dynamic system may begin to behave by unforeseen chaotic manner
when any accidental influence is absent. However, in this unpredictability it is
possible to identify a number of regularities in the system behaviour which
distinguishes this phenomenon from the classical random processes. Moreover, in
contrast to the classical random processes, the phenomenon of deterministic chaos
can be reproduced in natural, laboratory and numerical experiments. It is known
three main routes to chaos in dynamical systems [1,3]:

- period-doubling route to chaos — the most celebrated scenario for chaotic
vibrations;

- quasiperiodic route to chaos;

- route to chaos via intermittency by Pomeau and Manneville: the long
periods of periodic motion with bursts of chaos; as one varies a parameter the
chaotic bursts become more frequent and longer [12].

The invariant torus break-down, or breakup of the closed curve provides just
quasiperiodic route to chaos. In [13] the authors consider the mathematical side
of this problem. They suggest some hypotheses and formulate theorem where
three possibilities are given:

- The stable and unstable periodic orbits vanish through a bifurcation.

- Stable and unstable manifolds of the unstable periodic orbit intersect
tangentially to form a homoclinic orbit.

- The stable periodic orbit looses stability.

The authors write at the paper end:”The further experimental and numerical
studies of mentioned problems have to confirm or to refuse these hypotheses”.
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In [4] there is section “Universal properties of the route from quasiperiodisity
to chaos”. The author considers this problem in the main via maps. Recently the
problem of torus break-down was considered for example in [14-17].

We use different characteristics in order to be sure that obtained oscillatory
regime is chaotic one.

Poincaré maps are one of the principal ways of recognizing chaotic vibrations
in low-degree of freedom problems. Poincaré maps and phase plane portraits can
often provide graphic evidence for chaotic behaviour and the fractal properties of
strange attractors. Poincaré maps help to distinguish between various qualitative
states of motion such as periodic, quasiperiodic, or chaotic. But quantitative
measures of chaotic dynamics are also important and in many cases are the only
hard evidences for chaos. One of the significant characteristics is Fourier
distribution of frequency spectra. The difference between chaotic and
quasiperiodic motion can be detected by taking the Fourier spectrum of the
signal. A quasiperiodic motion will have the well-pronounced peaks at basic
frequencies and at their combinations, chaotic motion — a broad continuous
spectrum of Fourier components.

Chaos in dynamics implies a sensitivity of the outcome of a dynamical
process to changes in initial conditions. Small uncertainties in initial conditions
lead to divergent orbits in the phase space. Small changes in initial conditions (or
in some other parameters such as, for example, the amplitude or frequency of
exciting force, damping coefficient) can dramatically change the type of output
from a dynamical system.

Lyapunov exponents characterize the kind of dynamical system motion
because they measure the divergence rate of nearby trajectories. In order to have
a criterion for chaos one need only calculate the largest exponent A which tells

whether nearby trajectories diverge (A >0) or converge (A<0) on the

average. Its sign is chaos criterion. For regular motionsA <0, but for chaotic
motion A >0 that is positive Lyapunov exponent imply chaotic dynamics.

There are some difficulties with Lyapunov exponents determination for non-
smooth systems especially for discontinuous systems with impacts. These
difficulties are caused by the discontinuity of motion equations right-hand sides.
The Jacobian matrix which is used in Benettin’s algorithm of Lyapunov
exponent calculation is also discontinuous. At present there are several
propositions for Lyapunov exponents calculation in non-smooth systems. The
authors of these propositions describe their own methods for such estimation
[18-20].

One can consider the fractal structure of Poincaré map as visit card of chaotic
motion. When the motion is chaotic, a mazelike, multisheeted structure in
section may appear. This threadlike collection of points seems to have further
structure when examined on a finer scale. The term fractal characterizes such
Poincaré patterns. So the fractal dimension of chaotic attractor is one of the
principal measures of chaos.

In [1] the author advises not to rely on one measure of chaos in dynamical
experiments, but to use two or more techniques such as Poincaré maps, Fourier
spectra, Lyapunov exponents or fractal dimension measurements before
pronouncing a system chaotic or strange.
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When we say about quasiperiodic route to chaos we have to bear in mind that
in this case the whole picture is found sufficiently complicated. Its many aspects
remain not studied to the end so far. Attractor evolution under governing
parameter changing may be various and complicated. Quasiperiodic and periodic
regimes may alternate and undergo different bifurcations.

The goals of this paper are the following:

1) To study by numerical simulation the picture of invariant torus (or closed
curve) break-down that is the quasiperiodic route to chaos in 2-DOF two-body
vibroimpact system.

2) To evaluate the chaoticity of obtained oscillatory regimes by several
quantitative and qualitative characteristics such as Poincaré maps, Fourier
spectra, the largest Lyapunov exponents, and fractal structure of Poincaré map.

3) To confirm or to refuse the hypotheses about breakup of invariant torus
formulated earlier.

2. The background for studying of quasiperiodic route to chaos in
vibroimpact system
We have studied the dynamic behaviour of 2-DOF two-body vibroimpact
system (Fig. 1) in our previous works [21-23]. Therefore we’ll give only short
problem description.
F(?) This model is formed by the main body
m; and attached one m;, , which can play the
role of percussive or non-percussive
m L dynamic damper. Bodies are connected by
k| ke linear elastic springs with stiffness 4, and 4,
and dampers with damping coefficients c,
X and ¢;. (The damping force is taken as
Fig. 1 proportional to first degree of velocity with
coefficients c; and ¢,.)
The differential equations of its movement are:

C C

. : _y 1
¥ = =280, —07 x — 28,0, X ( —%,)— 03—, +D)+E[F(f)—Fcon (=x2)];

.. L 1
%) =-28,05(x, _xz)—(ﬂlz (%) —x _D)+m_chon (%= %), (1)
C C m
h =Jk =.Jk ; ==L =—2; y=—%2.
where ®, m o, ®, 2/my s & o, & I, X m1

External loading is periodic one: F () = Pcos(ot+ @) , T =27/® is its period.
Impact is simulated by contact interaction force F,,, according to contact
quasistatic Hertz’s law:
Foon(2) = K[H(2)z(0],
4 q
K=o ———F—r—, (2)
38,+8,)V4+B
S, = 1- Mlz 5, = 1- M%
' En’ ! En’
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where z(¢) is the relative closing in of bodies, z(f)=x, —x;, 4, B, and q are
constants characterizing the local geometry of the contact zone; y, and E, are
respectively Poisson’s ratios and Young’s modulus for both bodies, H(z) is the

discontinuous step Heviside function. The numerical parameters of this system
are following:

m; =1000 kg, ©,=6.283 rad/s, &=0.036, E;=2.1-1011 N'm*, p,=0.3,

my = 100 kg, ©,=5.646 rad/s, &=0.036, E,=2.1-1011 N'm*, p,=0.3,

P=500 N, A=B=0.5m", ¢=0.318.

We have obtained loading curves [22] and amplitude-frequency response
[23] in wide range of control parameter by parameter continuation method.
Periodic motion stability or instability was determined by matrix monodromy
eigenvalues that is by Floquet multipliers’ values. The periodical solution is
becoming unstable one if even though one Floquet multiplier leaves the unit
circle in complex plane that is its modulus becoming more than unit.

Global view of amplitude-frequency response for both vibroimpact system
bodies is presented at D
Fig.2 in wide range of Amaﬁ'
excitation frequency. The
upper curve corresponds
to attached body (m,), o1

E / M
the lower one — to main B/ ¢ \Nﬁ L
body (m;). Unstable N
——-———'_'-’/

regimes are dotted by
0 2 4 6 8 10 o,rads’

grey colour. At axis of

ordinates we have semi-
amplitude Amax . It Fig. 2. Amplitude-frequency response

means half the peak-to-peak amplitude. For the nonharmonic oscillation it is

calculated by the formula 4, = —|xmax | -2'- |xmm|

There are some regions of instability of main (1,1)-regime' (7-periodic
regime with 1 impact per cycle): BC, DE, KL, MN. In this paper we study
dynamic  behaviour of vibroimpact system in frequency range
7.45 rad/s<®<8.0 rad/s that is at region KL. Partial view of amplitude-frequency
response in instability zone KL is presented at Fig. 3(a). At points K and L stable
(1,1)-regime is losing stability, the quasiperiodic regimes are arising as a result
of Neimark-Sacker bifurcations. The two complex conjugate multipliers 1 and

u* are leaving the unit circle (Fig. 3(b)).

' The mark (n,k) means nT-periodic vibration with & impacts per cycle [24], T is period of
external loading 7 =2n/®.
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Fig. 3. Partial view of amplitude-frequency response (a) and multipliers behaviour (b) in
KL region

After the stability loss at bifurcation points K and L the second basic

oscillatory frequency is arising mlz%(arg u+2km), k=0,£1,£2,... (the
argument of complex number is determined with accuracy +2km) [3]. This
frequency ; is not commensurate with first basic frequency ®. So the
branching dynamical state is quasiperiodic one. Simultaneous time trace of phase
plane motion and Poincaré map of this regime for ® = 7.46 rad/s are depicted at
Fig. 4. Here and further phase trajectories and Poincaré maps are presented for
the main body mj. Its Fourier spectrum in logarithmic scale is also shown at
Fig. 4. We see Poincaré section to be closed curve, and Fourier spectrum has the
well-pronounced peaks at two basic frequencies ® and ; and at their

combinations, what is typical for quasiperiodic motion.

1

X,m-s G(f) o)
‘ o, |/
\ 20—,
1,E+05 - / 20
o+o, |/
01 1,E+03 - \
(,0—(1)1
1,E+01 - ‘ H ’
-0,1 w 1,E-01 \ A
-0,013 0 X, m 0,00 7,00 14,00 f, rad-s"

Fig. 4. Poincaré map and Fourier spectrum for quasiperiodic regime

Now we’ll look at the system dynamic behaviour between points K
(w=7.45 rad/s ) and L (®=8.0 rad/s ) that is after Neimark-Sacker bifurcations.
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3. Vibroimpact system dynamic behaviour after Neimark-Sacker

bifurcations

We’ll see that soon after these bifurcations the quasiperiodic motion will be
destroyed. We’ll observe the breakdown of closed curves and of invariant torus
which are typical for quasiperiodic motion. We’ll see new regimes and their
alternation — subharmonic periodic vibrations that is regimes with long period
and big impact number per cycle (“chatter”). The appearance of subharmonic
periodic vibrations is one characteristic precursor to chaotic motion. And the
chaotic motion on strange attractor will not keep it waiting as a matter of fact.
One of the signs of impending chaotic behaviour in dynamical system is a series
of changes in motion nature as control parameter is varied. We’ll see some
transitional zones of prechaotic or postchaotic state. What do “transitional zones”
mean? We cannot call these regimes both periodic or quasiperiodic and chaotic
because their characteristics are contradictory ones. So we call they as
transitional zones as Prof. F. Moon writes in his famous textbook [1]. We think
maybe we’ll be able to “catch” intermittency at some frequency? It is future
work. Prof. A.Yu. Shvetz (National Technical University of Ukraine "KPI")
[6, 25] identifies intermittency with invariant measure helping. We think that it
would be nice to fulfill the wavelet analysis of these signals in order to obtain
sure quantitative characteristics of intermittency [26, 27].

Now let us have a more detail look at vibroimpact system states which are
realizing in this frequency range between Neimark-Sacker bifurcations that is
between points K and L. It is known that the sign of largest Lyapunov exponent
A determines sufficiently well the kind of oscillatory motion: the negative sign
A <0 corresponds to periodic regimes, the positive sign A >0 — to chaotic
ones, and A =0 — to quasiperiodic oscillatory regimes. It is known that
Lyapunov exponent estimation for non-smooth nonlinear systems has some
difficulties because just discontinuity of the right-hand side of motion
differential equations. We have written about the largest Lyapunov exponent
estimation in non-smooth vibroimpact system in [28]. Now we use the Benettin’s
algorithm. So far as step Heviside function H(x; —x,) is discontinuous one we

must take into attention zero and nonzero for this function under integration both
initial equations (1) and equations in variations that are used in Benettin’s
algorithm. We integrate these equations by the program ode23s (MATLAB®
ODE solvers). This program integrates the systems of stiff differential equations.

So the plot of the largest Lyapunov exponent dependence on control parameter
shows clearly the whole motion picture at this frequency range (Fig. 5). At this
Fig. we see the change of system dynamic states when the control parameter
(exciting frequency) is varied. The frequency ranges where the largest Lyapunov
exponent is negative (A < 0) correspond to periodic regimes, where A >0 — to
chaotic ones, and where A =0 — to quasiperiodic oscillatory regimes.

Let us now discuss more in details the route to chaos from quasiperiodic
regime.
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Quasiperiodic Prcchaos
O ‘......- ....-I ‘Lf ..' . Io.o-co. .I
742 7,& Yo 1A Y 182 192 gorads?
-0,09 \ o0
(19,12)
-0,18 -

Fig. 5. The largest Lyapunov exponent dependence on control parameter

We observe the hysteresis effect (jump phenomenon)’ in very narrow
frequency range 7.52 rad/s <® < 7.53 rad/s , where quasiperiodic and (19,12)-
periodic regimes are existing. The arising of one or the other regime depends on
history that is on initial conditions. It is the region where both periodic and
quasiperiodic motions can exist and the precise motion that will result may be
unpredictable.

The (19,12)-periodic regime is existing some more under short frequency
varying.

Then we see the short zone of transition from (19,12)-periodic regime to other
periodic regimes with long periods and big impact numbers per cycle (“chatter”
or “rattle”). Transition is beginning at ® = 7.55 rad/s when thirteenth impact is
adding to 12 existing ones. At Fig. 6 we clearly see this thirteenth impact. Then
there are regimes with very long periods, the Poincaré maps show big points
numbers  which after all form almost closed curve under

7.59 rad/s <w < 7.61 rad/s.

Feon:N The largest Lyapunov exponent

4,E+05 is decreasing tenfold. So this

regime looks highly

2 E+05 quasiperiodic one if we look at

its Poincaré map. But its Fourier

| | | | | | | | | §pectrum (in 10ge.1ri.thmic scale)

0,E+00 i & 5 30 2,8 is board and cont}nlous, such. as

under chaotic motion

Feon-N (Fig. 7,(d)). These

WL characteristics contradicts one

another, therefore we think that

2,E+05 we cannot call this regime both

| | I | | quasiperiodic and chaotic. It is

0,E+00 \I/I | | | transitional motion. At Fig. 7
0 fo 20 30 1,8

we show phase trajectories and
Poincar¢ maps for (19,12)-
periodic regime, chatter, and
) transitional regime.

Fig. 6. Contact forces for (19,12)-regime
(®=7.54 rad-s™" ) and for (19,13)-regime
(®=7.55 rads™'

? We consider hysteresis effect as dependence of the system state on its history (the system
manifests hysteretic features in the transition between different types of motion) [1].
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X,m-s’ i iy

X,m-s
e Pt
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S
0,27 J 0,26 ;
-0,04 0 X,,m -0,04 0 X,,m
() (b)
G(f)7
%,m-s’
1,LE+05+
/ N
J ) 1,E+03
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\ {
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Fig. 7. Phase trajectories and Poincaré maps for: (a) (19,12)-periodic regime ® = 7.54 rad/s ,
A =—0.081; (b) chatter @ = 7.58 rad/s , A = —0.020 ; (c¢) transitional regime ® = 7.61 rad/s,
A =0.0027 ; (d) Fourier spectrum for transitional regime, A = 0.0027

When we are following the Fig. 5 from the left to the right we see the
relatively big frequency range where periodic regimes are realizing up to
hysteresis phenomenon. There are subharmonics — (14,10) and (23,17)-periodic
regimes which sharply replace each other under ® = 7.72 rad/s . Subharmonics
play an important role in prechaotic vibrations so far as their appearance in
frequency spectrum often is a characteristic precursor to chaotic motion. There
may be in fact many patterns of prechaos behaviour.

We again observe the hysteresis effect in very narrow frequency
range 7.77 rad/s < @ < 7.79 rad/s, where transitional (prechaos) and (9,6)-
periodic regimes are realising. In this frequency range the Poincaré map for
transitional (prechaos) motion is becoming a set of points generally arranged in
almost closed curve. It is the breakup of the quasiperiodic torus before the
chaotic motion. At very narrow frequency range 7.80 rad/s < < 7.815 rad/s
there is a chaotic motion (A = 0.018).

After that we see the zone with complicated motion picture
under 7.80 rad/s < 0 < 7.89 rad/s . Here chaotic motion alternates with prechaos
and postchaos behaviour.

For example at Fig. 8 phase trajectories and Poincaré maps in such states are
depicted.
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X,m-s’ : 1
12 X, m-s
0 0 - L q)
< L4
.. i
‘ . -
.
0,27 | 0,25 ‘
-0,04 0 X,, m -0,04 0 X, m
(2) (b)
X,m-s’ X,m-s’
-
-~ N
!‘ /H'T)ﬂ N <~
0 \X 0
b -
4{ < ‘)& v &/
E N
w {kw{-
0,27 : 025 :
-0,04 0 X, M -0,037 0 X, m
© (d)

Fig. 8. Phase trajectories and Poincaré map for: (a) @ = 7.80 rad/s, A = 0.018 ; (b) ® = 7.82 rad/s ,
A =0.0092;(c) ®=7.83rad/s, A =0.031;(d) w=7.845rad/s, A =0.0086

%, m-8 Eventually there is really chaotic motion
in narrow frequency range
7.90 rad/s < ® < 7.92 rad/s . At first we see
0.03 4 Q how Poincaré map for quasiperiodic motion
7 is deforming under ®=7.93 rad/s (Fig. 9)
when frequency is decreasing. Chaotic
motion is characterized by the breakup of the
quasiperiodic torus structure as the control
-0,17 T i i
0,025 0005 x.m parameter is decreasing.
(2)
x,m-s’ . 4
! X,m-s
0 ot
-0.2 T -0,24 T
0,026 0,004 x.m -0,032 0 X,,m
(b) ©)

Fig. 9. Phase trajectories and Poincaré map for: (a) ® = 7.94 rad/s , A = 0.0086 ;

(b) ® =7.93rad/s, A =0.0069 ; (c) ®=7.92rad/s, A =0.014
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Let us have a look at chaotic motion under
w=792rad/s, A=0.014. At Fig. 11 Poincaré
map for main body m; and Fourier spectrum in
logarithmic scale are depicted. Poincaré map does
not consist of either a finite set of points or a
closed orbit. Prof. F. Moon [1] have called his
Poincaré map “Fleur de Poincaré¢” (Fig. 10). There
is not the word “fleur” in English. There is word
“Fleur-de-lis” which means “ipuc” in Ukrainian.
His Poincaré map is similar at fleur-de-lis. Prefix
“de” is used in French, Poincaré was Frenchman.
Therefore we call our beautiful map as “Leaflet de
Poincaré¢” (“memoctka” in Ukrainian).

At Fig. 11 we see a broad continuous spectrum
of Fourier components what is typical for chaotic

motion. The generation of a continious spectrum of Fig. 10 Poincaré map —
frequencies is one of the characteristics of chaotic Fleur de Poincaré [1]
vibrations.

Our vibroimpact system is the damped one. Poincaré map is the singular
characteristic of chaotic vibrations in such system. The Poincaré map appears as
an infinite set of highly organized points arranged similar to parallel lines.
Chaotic motion is not a formless chaos but one in which there is some order that
is fractal structure.

We enlarge a portion of the Poincaré map and observe further structure. We
see that this structured set of points continues to exist after three enlargements
(Fig. 12). So the motion appears to occur on the strange attractor. This
embedding of structure within structure is a strong indicator of chaotic motion. It
is similar to Cantor set.

We observe the fractal structure of Poincaré map depicted at Fig. 11, at least
this structure looks highly fractal. We have been able to obtain it when we have
had 207000 Poincar¢ points on the map. It is shown at Fig. 12. We think that just
this fractal structure implies the existence of a strange attractor.

8

X, m-s™
G(f) 1
0,08
1,E+05
0,04 - 1,E+03 4
0 ., 1LE+01 A
DS " \
004 i i i ' 1,E-01 : 1
0,015 0,005 0,005 0,015 0,025 X, m 0 7 14 f,rad-s’

Fig. 11. Poincaré map (“Leaflet de Poincaré”) and Fourier spectrum for ©=7.92 rad/s, A = 0.014
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Thus Poincaré map, Fourier

0,004 - - o spectrum, the largest positive
R Lyapunov exponent, and fractal
-0,001 - structure of Poincaré map confirm
e the chaoticity of this regime.
‘0’0060,017 0,018 0,019 0,02 So we see three very sho.rt
pr— freq.uency ranges where chaotic
0,004 motions are
\ realizing:
0,003 e 7.80 rad/s < w < 7.815 rad/s ,
®="7.83 rad/s,
O . ' ‘ 5 7.90 rad/s < w < 7.92 rad/s .
" 0,01908 0,01918 0,01928 We  think these chaotic
X motions may be considered as
“h transient chaos because chaotic
Ll ’ vibrations appear for some
5 parameter changes and then
. T s degenerate into a quasiperiodic
70,0191 0,01915 0,0192 motion after a short time

1,2 .
Fig. 12. Fractal structure for Poincaré map [ ’ 9’ 30] .
from Fig. 11 4. Conclusions

Quasiperiodic route to chaos
in vibroimpact system have been studied under changing of external frequency.

1. At this sufficiently complicated route different oscillatory regimes have
succeeded each other many times under very small control parameter varying in
narrow frequency range. There were periodic subharmonic regimes — chatters,
quasiperiodic, and chaotic regimes. There were the zones of transition from one
regime to another, the zones of prechaotic or postchaotic motion. The hysteresis
effects (jump phenomena) have been observed at two frequency ranges.

2. The chaoticity of obtained regime has been confirmed by typical views of
Poincaré map and Fourier spectrum, by the positive value of the largest
Lyapunov exponent, and by the fractal structure of Poincaré map.

3. Our picture of quasiperiodic route to chaos confirm the theory by
Newhouse, Ruelle, and Takens who suggested a new bifurcation scenario where
a periodic solution produces subsequently a torus and then a strange attractor.
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Baoicenos B.A., Ilocopenosa O.C., [locmuixosa T.I.
PYWHYBAHHS THBAPIAHTHOI'O TOPY Y BIGPOYJIAPHIA CUCTEMI - IILJISIX JTO
KPU3H?

XaoTH4HI KOJIMBAHHA AWHAMIYHHX CHCTEM 1 CIEHapii IXHBOTO IIepexXoixy IO Xaocy —OAmHe 3
HaOLIbII [[IKaBHX 1 OCHIKYBAaHUX MUTaHb B HEMiHIMHII quHaMini. 30kpema, cieHapil mepexoay 10
XaoCy B HErIaiKuX AUHAMIYHUX CHCTEMaX IPEICTaBIIOTh OCOONMBHII iHTepec. Y miil craTri Mu
BUBYAEMO KBa3ilepioJWYHHH NUIIX IO Xaocy HeNiHiiHOi Hermagkoi po3puBHOI BiOpoymapHOi
CHCTEMH ¢ JIBOMA CTYITHAMH BiIbHOCTI. PyliHyBaHHS iHBapiaHTHOTrO TOpa, a00 3aMKHYTOI KpHBOi, Ma€
Mmicme came IpH KBasimepiogudHoMmy mepexoni no xaocy. Lle mopora no xpusu? Y By3bKOMY
Jiaria3oHi 4acTOT Pi3Hi KOJIMBAIBHI PEXUMH 0araTopa3oBo 3MIHIOBAIX OJHMH OJHOIO IPH JyXkKe Mallii
3MiHI Befydoro napamerpa. Lle Oy mepiofudni cyorapMOHidHI pexKUMH (CTYK), KBa3inepiogndHi Ta
XA0THYHI PeXKUMH, 30HH NEPEAXa0THIHOTO Ta MicCIIXaoTHYHOTO pyxy. Edextu ricrepesucy (sBuma
NepeKUIaHHs) BHHUKAIM IpH 30iMbIICHHI 1 3MeHImIeHHI yacroTH. CHocTepexyBaHHUl Xaoc OyB
nepexifHuM. XaOTHYHICT OTPUMAHOI0 PEKUMY IiNTBEpKyBalacs THIIOBUM BUJIOM BiToOpaxKeHHs
ITyankape i ®yp'e cHekTpy, HDO3HTHBHHM 3HAa4YEHHSAM CTapIIOro IokasHHka JlimyHoBa Ta
(pakTagbHOW CTPYKTYporo BimoOpaxkeHHs Ilyankape. L{i moCHiIpKEHHS MiATBEPHXKYIOThH TEOPIiO
Hrloxay3a, Proems i TaxeHca, sKki 3amponoHyBanmy HOBUH Oidypkamiiumili cueHapiif, komu
HepiofudHe pillleHHs HapoKYeE TOP, a IIOTIM JUBHUM aTTPaKTop.

KiarouoBi ciaoBa: BiOpoygapHa cucTeMa, JWHAMIYHA IOBEIIHKA, KBa3ilEepioJu4Hi, XaOTHYHI,
cybrapmoniky, BimoOpaxenus Ilyankape, cmekrp ®yp'e, mokasuuk JlimyHoBa, ¢pakTanbHa
CTpYyKTYypa.

Baoicenos B.A., Ilozopenosa O.C., [locmnukoea T.I.
PASPYIIEHUE UHBAPUAHTHOI'O TOPA B BUBPOYJIAPHOMW CUCTEME - IYTh K
KPU3UCY?

XaoTHdyeckre KoneOaHUs TMHAMHYECKHX CHCTEM H CLIIEHApHU HX IIepexoja K Xaocy — OfUH U3
HanOoee HHTEPECHBIX U HCCIIEyeMBIX BOIIPOCOB B HEIMHEHHOH AuHaMuKe. B gactHOCTH, cLleHapHU
mepexozia K Xaocy B HEeINIaJKHX JHHAMHYECKUX CHCTeMaX IPEACTaBIIOT co00i 0coOblii nHTEepec. B
9TOH CTaThe MBI U3y4aeM KBa3UIIEPUOAMYECKHH IMyTh K XaoCy HEIMHEHHON Hernaikoil pa3pbIBHOM
BUOPOYHapHOH CHCTEMBI C ABYMS CTEICHSAMH CBOOOABL. PaspylieHne WHBapHAaHTHOIO TOpa, HIU
3aMKHYTOI KPUBOWH MMEET MECTO UMEHHO IIPH KBAa3UIIEPUOJHUYECKOM IIEPEXOJIE K Xaocy. DTO jopora
K Kpusucy? B y3koM Juama3oHe Y4acTOT pa3JIMYHbIe KOJICOATEIbHbIE PEXUMBI MHOTOKPATHO CMEHSIIH
JIPYT ApyTa IpU OYeHb MaJOM H3MCHEHHH YIPABISIONIEro mapamerpa. JTo ObLIM IEePHOJHIECKHE
cyOTapMOHHYECKHE PEXHMBI (CTYK), KBa3HICPUOAMYECKHE U XAaOTHUECKHE DPEXHUMBIL, 30HBI
IPEAXa0THIECKOr0 U IIOCIEeXa0THIECKOro ABIDKEHHS. D(deKTsl rucrepesuca (SBieHus mepedpoca)
BOZHHKAIIH IIPU YBEIMYCHHHM M YMEHBIICHHH 4acToThl. HaOmomaemblii Xaoc OBLI HEpPEXOIHBIM.
XaOoTHYHOCTH HOJIYICHHOTO PEXHMa IOATBEPXKIaIach THIIMIHEIM BUAOM oToOpaxkeHus Ilyankape u
Dypbe crexTpa, MONOKUTEIBHBIM 3HAYEHHEM CTapliero nokasartems JlamyHoBa m dpakTanbHON
CTpYKTYpoil oToOpakenus Ilyankape. DTH ncclieqoBaHus IOATBEPKAAOT Teopuro Heloxaysa, Prosms
n TakeHca, KOTOpble NPEUIOKHIM HOBBI OH(YpKAallMOHHBIH CIEHApUH, KOIJa NEpHOAUYECKOEe
pelIeHe PoXKIAET TOP, a 3aTEM CTPaHHBII aTTPAKTOD.

KuioueBble c10Ba: BUOpOy#apHas CHCTeMa, JUHAMUYECKOE IIOBEACHUE, KBA3UIIEPHOAUYECKIE,
XaoTHYecKue, cybrapMonuku, orobpaxenue Ilyankape, crmextp ®ypwe, mokaszatens JlamyHosa,
(pakTanbHas CTPYKTypa.



ISSN 2410-2547 17
Omip MatepianiB i Teopist copyx/Strength of Materials and Theory of Structures. 2018. Ne 100

UDC 539.3

Bazhenov V. A., Pogorelova O.S., Postnikova T.G. Invariant torus break-down in

vibroimpact system — route to crisis? // Strength of Materials and Theory of Structures:

Scientific-and-technical collected articles — Kyiv: KNUBA, 2018. — Issue 100. — P. 3-17.
Quasiperiodic route to chaos in nonlinear non-smooth discontinuous 2-DOF

vibroimpact system is studied.

Fig. 12. Ref. 30

YK 539.3
basicenos B.A., Iloecopenosa O.C., Ilocmuixoéa T.I". PyiiHyBaHHsI iHBapiaHTHOTO TOpPY
y BiOpoynapHiii cucremi - muisx 10 kpusu?// Onip Matepialnis i Teopis copya: HayK.-
tex. 30ipH. — K.: KHYBA, 2018. — Bum. 100. - C. 3-17.

Busuacmuvca keazinepioOuunuil wisx 00 XAocy HeNiHIHOT He2naoKoi po3pusHoi
8i0poyOdapHoi cucmemu ¢ 080Ma CMYNHAMU GIILHOCHI.
In. 12. Bi6mior. 30 Ha3B.

YK 539.3

basicenos B.A., Hozcopenosa O.C., Ilocmnuxosa T.I. Ppa3pylieHne MHBApMAHTHOTO

Topa B BHOpOYJAapHOii cucTeMe — MyTh K Kpuzucy?// COnpoTUBICHUE MAaTECPUAIOB U

Teopust coopykeHuil: Hayd.-Tex. coopH. — K.: KHYCA, 2018. - Bem. 100. - C. 3-17.
H3zyuaemcs keazunepuoouyeckuti nymo K Xaocy HeNUHeUHOU He2AadKol pa3pbléHOU

8UOPOYOapHOU cucmeMbl ¢ 08YMs CeneHsAMU c80000bl.

Wn. 12. bubnuor. 30 Hass.

ABTOp (BYeHa CTyNeHb, BUEHE 3BaHHS, NM0CANA). OOKMOP MEXHIYHUX HAYK, npoghecop, akademix
Hayionanenoi  axademii nedacoziunux nayx Yxpainu, oupexmop HJI 6yoisenvnoi mexamixu
BbAKEHOB Bikmop Auopitiosuy

Anpeca poboua: 03680 Vipaina, m. Kuis, Ilogimpogromcokuii npocnexm 31, Kuiscoxuil
HayionanvHuil ynisepcumem 0yoisnuymea i apximexmypu, BAJKEHOBY Bikmopy Auopiiiosuyy
Pobounii Ten.: +38(044) 245-48-29;

Mobinbuuii Tea.: +38(067) 111-22-33;

E-mail: vikabazh@ukr.net
ORCID ID: https://orcid.org/0000-0002-5802-9848

ABTOp (BY€Ha CTyNeHb, BY€He 3BaHHM, MOCANA). KAHOUOAM @DI3UKO-MAMEMAMUYHUX HAYK,
cmapuiuil HayKosuill cniepoOimuuK, nposioHutl Haykosuii cniepobimuux HJJI 6ydisenvroi mexaHixu
TIOI'OPEJIOBA Onvea CemeHnisra

Anpeca poboua: 03680 Vipaina, m. Kuis, Ilogimpognomcokuii npocnexm 31, Kuiscoxuil
Hayionansuuil ynieepcumem 6ydisnuymea i apximexmypu, IOFOPEJTOBIH Onv3i Cemenisni.
Po6ounii Ten.: +38(044) 245-48-29

Mobinbuuii Te.: +38(067) 606-03-00

E-mail: pogosl3@ukr.net
ORCID ID: https://orcid.org/0000-0002-5522-3995

ABTOp (BY€HA CTYNEeHb, BU€HE 3BAHHS, N0CANA). KAHOUDAM MEXHIYHUX HAYK, CIAPUIULL HAYKOBULL
cnigpobimuuk, cmapwuil Haykosuil cnigpobimnux HJI 6ydieenvnoi mexanixu ITOCTHIKOBA
Temsana I'eopeiiena

Anpeca poboua: 03680 Vkpaina, m. Kuis, Ilogimpogromcvkuii npocnexkm 31, Kuiscoruil
nayionansnuil ynieepcumem 6yoisuuymea i apximexmypu, IOCTHIKOBIH Temsni Teopeiisi.
Po6ounii Ten.: +38(044) 245-48-29

Mobinbuuii Te.: +38(050) 353-47-19

E-mail: posttan@ukr.net
ORCID ID: https://orcid.org/0000-0002-6677-4127



