### ІНФОРМАТИЗАЦІЯ ВИЩОЇ ОСВІТИ

#### УДК 658.012.23:001.895

#### А.А. Белощицкий

Киевский национальный университет строительства и архитектуры, Киев

### ВЕКТОРНЫЙ МЕТОД ЦЕЛЕПОЛАГАНИЯ ПРОЕКТОВ В ПРОЕКТНО-ВЕКТОРНОМ ПРОСТРАНСТВЕ

Предложен ориентированный на специфику образовательных сред метод интеграции устремлений заинтересованных сторон в систему целей проекта. Метод базируется на представлении целей проекта множеством точек, необходимость достижения которых и определяет траекторию движения объектов и субъектов проектов в проектно-векторном пространстве.

Ключевые слова: управление проектами, методы целеполагания, проекты образовательных сред, проектновекторное пространство

#### Постановка проблемы

Каждый проект начинается с формулировки его целей. Цель является главным системообразующим фактором в любом проекте. От такого, как сформулирована цель перед его участниками зависит эффективность движения от ситуации, когда продукта проекта нет, к полной его готовности. Проблема целеполагания в проектах образовательных сред состоит в том, что у заинтересованных сторон есть свои цели участия в проектах, поэтому необходима разработка специальных методов, направленных согласование и превращение целей отдельных сторон заинтересованных В реалистичную, достижимую и удовлетворяющую всех проекта. Это позволит сбалансировать интересы заинтересованных сторон и обеспечит тем самым бесконфликтное планомерное проекта.

### Анализ основных исследований и публикаций

Известные концепции целеполагания (например, SMART) показывают, как должна быть сформулирована цель проекта [1]. Достаточное количество работ посвящено определению как целей развития образовательной сферы государства в целом, так и определению целей отдельных направлений деятельности [2-3]. Много работ

ВЕКТОРНИЙ МЕТОД ЦІЛЕПОКЛАДАННЯ ПРОЕКТІВ У ПРОЕКТНО-ВЕКТОРНОМУ ПРОСТОРІ

Запропоновано орієнтований на специфіку освітніх середовищ метод інтеграції устремлінь зацікавлених сторін в систему цілей проекту. Метод базується на представленні цілей проекту множиною точок, необхідність досягнення яких і визначає траєкторію руху об'єктів і суб'єктів проектів в проектновекторному просторі.

VECTOR METHOD
TSELEPOLAHANYYA PROJECTS
IN THE PROJECT VECTOR
SPACE

Proposals oriented to the specifics of educational environment integration method ustremlenyy zaynteresovannыh side of the system objectives of the project. Method bazyruetsya on presentation of objectives of the project multitude tochek, The need kotorыh achievements and determines traektoryyu motion objects and subъektov projects in project-vector

направлено на анализ проектно-ориентированной деятельности в высших учебных заведениях [4-5], но отсутствуют работы посвященные разработке моделей и методов целеполагания проектов в образовательных средах.

#### Нерешенная ранее часть проблемы

Несмотря на полученные научные и практические результаты в сфере управления проектами, вопрос создания ориентированных на образовательные среды моделей и методов интеграции целей отдельных участников проектов в единую цель проекта не нашел достаточного отражения в современных публикациях. Наличие нерешенной части проблемы в этой сфере выдвигает объективную потребность в разработке методов целеполагания проектов образовательных сред.

### Формулировка целей статьи

Целью статьи является разработка ориентированного на образовательные среды метода интеграции целей заинтересованных сторон в систему целей проекта и представление ее как конечных точек движения в проектно-векторном пространстве.

#### Основной материал исследований

Концептуальной основой разрабатываемого метода является представление о соответствии развития проектов образовательных сред движению

110 © А.А. Белощицкий

их сущностей в некотором абстрактном пространстве, которое расширяется. Такое пространство получило название проектновекторного (ПВП) [6].

В такой интерпретации реализация проекта — это движение в ПВП, в котором можно выделить измерения — стоимость, качество, организация, время, информация по проекту и т.д. Тогда цель проекта представима некоторыми достижимыми для субъектов и объектов проектов координатами конечных точек движения.

Сложность построения методов управления движением субъектов и объектов в таком пространстве состоит в необходимости решения ряда взаимосвязанных задач, среди которых согласование (координация) процессов по разным векторам, стандартизация процессов в типовых построение системы векторах, векторов минимальным пересечением по функциям, что реализуются и т.п. Но для решения всех этих задач необходимо, в первую очередь, разработать метод определения целей движения объектов и субъектов ПВП (конечных точек движения) – метод целеполагания в проектно-векторном пространстве.

Проблематика разработки этого метода связана с определением таких целей проектов, которые будут соответствовать максимальному расширению ПВП (Вселенной проектов) образовательных сред. И расчетом траектории движения в ПВП, обеспечивающей достижение этих целей с минимальными затратами времени и финансовых ресурсов. Необходимо определить такие конечные координаты

$$\Pi_{k}$$
 :  $orall \mathbf{Q}_{j}$  :  $\mathbf{x}_{kl}^{(j)}(T), \mathbf{x}_{k2}^{(j)}(T), ..., \mathbf{x}_{kp}^{(j)}(T)$  , для которых

$$\forall \Pi_k : \sum_{N_p} \left( \lambda_p \cdot \sum_{j} \left( \sigma_j \cdot \mathbf{x}_{kp}^{(j)}(T) \right) \right) \rightarrow \max,$$

при ограничениях

1. Невынужденное сопротивление движению

2. 
$$\forall \Pi_k : E^k \ge \sum_{N_k} \sum_{i} \left[ \gamma_i^{jk} \cdot \left( \mathbf{x}_{kp}^{(j)}(T) \right)^3 \right],$$

где  $\lambda_{\rm p}$  — приоритетность движения в направлении  $N_p$  (насколько важно, чтобы в цели было отражено движение именно в этом направлении);  $\Pi_k$  - проект;  $E^k$  — ресурс (энергия) проекта  $\Pi_k$ ;  $Q_j$  — объект/субъект ПВП;  $\sigma_j$  — приоритет объекта/субъекта  $Q_j$  ПВП;  $\mathbf{x}_{\rm kp}^{(j)}(T)$  — конечное значение координаты объекта/субъекта ПВП  $Q_j$  проекта  $\Pi_k$  по оси  $N_p$ ;  $\gamma_i^{jk}$  — коэффициент сопротивления движению объекта/субъекта ПВП  $Q_j$  проекта  $\Pi_k$  в направлении  $N_i$ .

Цели заинтересованных сторон формально должны быть представлены некоторыми точками в ПВП, достижение которых осуществляется в процессе реализации проекта. Речь идет о движении (развитии) множества объектов проектов, более или менее важных (коэффициент  $\sigma_j$ ), за отведенное время T, в направлении, важность которого определяется ко

эффициентом  $\lambda_p$  и с учетом сопротивления движению по этим направлениям  $\gamma_i^{jk}$ . Поэтому найти наиболее «дальние» точки развития всех объектов проекта при заданных ресурсах (энергии) очень сложно.

Каждый проект реализуется для удовлетворения потребностей заинтересованных сторон. Значит, все заинтересованные стороны реализуя проект, достигают определенных целей, связанных с удовлетворением их потребностей. Но цели разные. Если взять всех участников проекта, то получится целый спектр различных взглядов на продукт, процессы, цели и т.д. (таблица).

Исходными данными для определения целей проектов, соответствующих максимальному расширению «Вселенной проектов» будут:

- множество отношений к проекту (субъектов ПВП) у заинтересованных сторон, движение которых в ПВП соответствует степени удовлетворения от проекта;
- направление непринужденного сопротивления движению субъектов в ПВП, порождаемое «гравитационной» зависимостью от других объектов этого пространства;
- энергетическая зависимость перемещения целевых субъектов и определяющих это движение объектов в ПВП (сколько надо ресурсов для перемещения объекта или субъекта в ПВП на некоторое расстояние).

Задачей метода является вычисление достижимых координат каждым из субъектов ПВП проекта Пк

$$\Pi_{k}: \forall C_{jk} \in \Gamma_{k}^{C} (\Gamma_{k}^{C} \cup \Gamma_{k}^{O} = \Gamma_{k} \wedge \Gamma_{k}^{C} \cap \Gamma_{k}^{O} = \varnothing):$$

$$X_{k1}^{(j)} (\overline{T_{k}^{\partial up}}), \dots, X_{kn}^{(j)} (\overline{T_{k}^{\partial up}}),$$

где  $\Gamma_k$  — наполнение ПВП объектами и субъектами проекта ПК;  $\Gamma_k^C$  — субъекты ПВП;  $\Gamma_k^O$  — объекты ПВП проекта ПК;  $C_{jk}$  — субъект ПВП проекта ПК;  $x_{kl}^{(j)}(\overline{T_k^{oup}}),...,x_{kp}^{(j)}(\overline{T_k^{oup}})$  — конечные координаты субъекта ПВП  $C_j^k$  проекта ПК в планируемый момент завершения проекта  $\overline{T_k^{oup}}$ .

Таблииа

Отношения к категориям проекта у заинтересованных сторон

| Заинтересованная | Отношения к категориям проекта у заинтересованных сторон |                |                |            |
|------------------|----------------------------------------------------------|----------------|----------------|------------|
| сторона проекта  | К проекту                                                | К продукту     | К процессу     | Что        |
|                  |                                                          |                |                | получает   |
|                  |                                                          |                |                | от проекта |
| ЗАКАЗЧИК         | инициатор и                                              | заинтересован  | чем быстрее,   | Продукт    |
|                  | главное                                                  |                | дешевле и      |            |
|                  | заинтересованное                                         |                | качественнее – |            |
|                  | лицо                                                     |                | тем лучше      |            |
| ИНВЕСТОР         | заинтересован в                                          | не             | чем быстрее и  | прибыль    |
|                  | успешном                                                 | заинтересован  | дешевле – тем  |            |
|                  | завершении                                               |                | лучше          |            |
| ИСПОЛНИТЕЛЬ      | заинтересован в                                          | не             | чем дольше и   | работу и   |
|                  | реализации                                               | заинтересован  | дороже – тем   | прибыль    |
|                  |                                                          |                | лучше          |            |
| ПРОЕКТИ-         | заинтересован в                                          | не             | чем больше     | работу и   |
| РОВЩИК           | разработке                                               | заинтересован  | изменений –    | прибыль    |
|                  |                                                          |                | тем лучше      |            |
| ПОСТАВЩИК        | заинтересован в                                          | не             | не             | работу и   |
|                  | его                                                      | заинтересован  | заинтересован  | прибыль    |
|                  | материалоемкости                                         |                |                |            |
| РУКОВОДИТЕЛЬ     | заинтересован в                                          | заинтересован  | заинтересован  | работу,    |
| ПРОЕКТА          | успехе                                                   | в качестве     | в хорошей      | карьерный  |
|                  |                                                          |                | организации    | рост       |
| КОМАНДА          | заинтересованы в                                         | не             | заинтересованы | работу,    |
| ПРОЕКТА          | существовании                                            | заинтересованы | в хорошей      | карьерный  |
|                  |                                                          |                | организации    | рост       |

Вычисление конечных точек движения осуществляется в соответствии со следующей схемой:

### 1. Определение ограничений на движение объектов ПВП

К таким ограничениям относятся:

• перечень объектов и субъектов ПВП:

$$\Pi_k:\Gamma_k^C=\{C_{jk}\},j=\overline{1,n_k^C},\Gamma_k^O=\{O_{jk}\},j=\overline{1,n_k^O},$$
 где  $\mathbf{n}_k^C$  — количество субъектов ПВП;  $\mathbf{n}_k^O$  — количество объектов ПВП.

- предельное время расширения «Вселенной проекта» Пк (  $\overline{T_k^{\partial up}}$  );
- потенциальная энергия объектов ПВП (ресурс, выделенный проекту Пk) (Ek).

#### 2. Определение условий развития ПВП

К таким условиям относятся:

- направление невынужденного сопротивления для любых взаимодействующих пар объектов ПВП;
- значение невынужденного сопротивления для субъектов ПВП определяется коэффициентом  $\gamma_i^{jk}$  (сопротивления движению субъекта ПВП Сј проекта Пk в направлении Ni). Он показывает величину затрат, необходимых для преодоления единицы расстояния по данному направлению.

# 3. Определение допустимых конечных координат субъектов ПВП

Допустимые конечные координаты соответствуют необходимому условию реализации проекта данным субъектом. Если их достижение в проекте не гарантировано – нет смысла участвовать в проекте. Эти координаты задаются на основе экспертной оценки условий участия заинтересованных сторон в проекте:

$$\begin{split} &\Pi_k: \forall \mathbf{C}_{\mathrm{jk}} \in \Gamma_k^C \, (\Gamma_k^C \cup \Gamma_k^O = \Gamma_k \wedge \Gamma_k^C \cap \Gamma_k^O = \varnothing): \\ &\hat{\mathbf{x}}_{\mathrm{kl}}^{(j)} (\overline{T_k^{oup}}), ..., \hat{\mathbf{x}}_{\mathrm{kp}}^{(j)} (\overline{T_k^{oup}}), \end{split}$$

где  $\hat{\mathbf{X}}_{k1}^{(j)}(\overline{T_k^{\partial up}}),...,\hat{\mathbf{X}}_{kp}^{(j)}(\overline{T_k^{\partial up}})$  — минимально допустимые конечные координаты субъекта ПВП Сјк проекта Пk в планируемый момент завершения проекта  $\overline{T_k^{\partial up}}$ .

# 4. Определение возможности достижения допустимых конечных координат субъектов ПВП

По всем субъектам ПВП рассчитывается возможность достижения допустимых конечных координат (исходя из затрат, необходимых для преодоления сопротивления ПВП за директивное время):

$$\forall C_j, \Pi_k, N_p : E^k \ge \gamma_p^{jk} \cdot \left(\hat{\mathbf{x}}_{kp}^{(j)}(\overline{T_k})\right)^3.$$

#### 5. Определение важности субъектов ПВП

Определяется важность субъектов ПВП с тем, чтобы цели проектов согласовать с целями наиболее значимых заинтересованных сторон:  $\sigma_{jk}$  - коэффициент, определяющий приоритетность целей субъекта ПВП  $C_{jk}$  проекта  $\Pi_k$ .

### 6. Определение важности направлений движения в ПВП для каждого объекта/субъекта

Определяется приоритетность в развитии объектов/субъектов ПВП. Что важнее. Быстрее потрать реализовать проект. Меньше денег. Повысить качество. Научиться управлению инструменты проектами. Создать эффективные управления проектами. Или что - либо еще. Задается коэффициентом  $\lambda_p$  -приоритетность движения в направлении  $N_p$  (насколько важно, чтобы в цели было отражено движение именно в этом направлении).

### 7. Расчет удельных усилий движения по направлениям и субъектам

Заданы:

- $1.\,\mathcal{V}_{\mathrm{i}}^{\,jk}$ -коэффициент сопротивления движению субъекта ПВП  $C_{j}$  проекта  $\Pi_{k}$  в направлении  $N_{i}$  (показывает величину затрат, необходимых для преодоления единицы расстояния по данному направлению).
- $2.\,m{\sigma}_{jk}$  -коэффициент, определяющей приоритетность целей субъекта ПВП  $C_{jk}$  проекта  $\Pi_k$ .
- 3.  $\lambda_p$  -приоритетность движения в направлении  $N_p$  (насколько важно, чтобы в цели было отражено движение именно в этом направлении).

Рассчитываются необходимые удельные усилия при движении по всем направлениям ПВП всех субъектов проектов. Это удельное усилие

равняется отношению сопротивления движения к приоритетам субъектов и направлений

$$\mathbf{K}_{i}^{jk} = \frac{\gamma_{i}^{jk}}{\lambda_{i} \cdot \sigma_{jk}},\tag{1}$$

где  $\mathbf{K}_{\mathrm{i}}^{jk}$  — коэффициент, отражающий удельные затраты на перемещения в направлении  $N_p$  на единицу приоритета целей субъектов ПВП и приоритета заданного направления (насколько легко и необходимо двигаться именно в этом направлении).

### 8. Установка начальных энергетических затрат на проекты.

Исходная точка, с которой начинается каждый проект, задается значениями:

$$\forall \Pi_k : E_{nnay}^k = e_0^k$$

где  $E_{nлан}^{k}$  – плановые расходы на проект  $\Pi_{k}$ ;  $e_{0}^{k}$  – начальные расходы на проект  $\Pi_{k}$  (понесенные до начала проекта  $\Pi_{k}$ ).

### 9. Выбор наиболее значимого направления движения и субъекта ПВП

Значимость субъекта и направления движения оценивается по удельным усилиям для смещения этого объекта в данном направлении и приоритетности этого направления. Соответствует минимальному значению коэффициента (1):

$$\min_{\Pi_k, C_j, N_p} \left( K_p^{jk} \right).$$

Выбор

$$\Pi_{k_0}, C_{j_0}, N_{p_0}: K_{p_0}^{j_0 k_0} = \min_{\Pi_k, C_{i}, N_p} (K_p^{jk}).$$

# 10. Расчет целевого смещения субъекта ПВП $\mathbf{C}_{\mathbf{j}_0}$ проекта $\Pi_{k_0}$ по направлению $N_{p_0}$

Если

$$E^{\mathbf{k}_0} - E^{\mathbf{k}_0}_{nnan} \ge \gamma_{\mathbf{p}_0}^{j_0 k_0} \cdot \left( \hat{\mathbf{x}}_{\mathbf{k}_0 \mathbf{p}_0}^{(j_0)} (\overline{T_{k_0}^{\partial up}}) \right)^3$$

то принимаются:

$$\mathbf{x}_{\mathbf{k}_{0}\mathbf{p}_{0}}^{(j_{0})}(\overline{T_{k_{0}}^{\partial up}}) = \hat{\mathbf{x}}_{\mathbf{k}_{0}\mathbf{p}_{0}}^{(j_{0})}(\overline{T_{k_{0}}^{\partial up}});$$

Из рассмотрения исключается движение субъекта ПВП  $\mathbf{C}_{\mathbf{j}_0}$  проекта  $\varPi_{k_0}$  по направлению  $N_{p_0}$  .

Иначе, рассчитывается предельная координата

$$\mathbf{X}_{\mathbf{k}_{0}\mathbf{p}_{0}}^{(\mathbf{j}_{0})}(\overline{T_{k_{0}}^{\partial up}}) = \sqrt[3]{\frac{E^{\mathbf{k}_{0}} - E_{n\pi a\mu}^{\mathbf{k}_{0}}}{\mathcal{Y}_{\mathbf{p}_{0}}^{j_{0}k_{0}}}}.$$

Принимаются

$$E_{nnah}^{\mathbf{k}_0} = E^{\mathbf{k}_0}.$$

Из рассмотрения исключается проект  $\Pi_{k_0}$ 

Если из рассмотрения исключены все проекты переход к п.11. Иначе, переход к п.9.

### 11. Оценка полученных целевых координат движения в ПВП.

Осуществляется экспертная оценка полученных значений. Если значения не удовлетворяют менеджмент проектов, то корректируются исходные данные и все повторяется с п.1. Если удовлетворяют — завершение.

# Выводы и перспективы дальнейших исследований

Реализация векторного метода целеполагания проектов образовательных сред даст возможность «вычислить» такие цели проекта, которые будут приняты всеми заинтересованными сторонами, будут соответствовать их устремлениям и возможностям. В дальнейшем планируется разработать метод расчета оптимальной траектории движения по достижению конечных (целевых) точек ПВП для всех заинтересованных сторон.

#### Список литературы

- 1. Бушуев С.Д. Основы профессиональных знаний и система оценки компетенции проектных менеджеров (National Competence Baseline, NCB UA Version 3.0)/С.Д.Бушуев, Н.С.Бушуева К.: ИРИДИУМ, 2006 225с.
- 2. Биков В.Ю. Моделі організаційних систем відкритої освіти/В.Ю.Биков— Монографія. К.: Атака, 2009.- 684 с.
- 3. Преображенский Б.Г. Синергетический подход к анализу и синтезу образовательных систем /Б.Г. Преображенский, Т.О. Толстых// Университетское управление. Екатеринбург: Вестник УГУ, 2004. N2 (31). C.7-12.
- 4. Тесля Ю.М. Модель мультипроекту модернізації системи управління якістю підготовки спеціалістів в ВНЗ всіх видів акредитації/ Ю.М. Тесля, І.О. Потай// Управління проектами та розвиток виробництва: Зб. наук. праць -№2 (18). К.: КНУБА, 2006 —. С.72-85.
- 5. Тесля Ю.М. Математична модель і алгоритм структуризації інформаційного середовища проектів навчання /Ю.М. Тесля, Ю.Г. Лега, І.І. Оберемок// Управління проектами та розвиток виробництва. Зб. наук. праць. №4; 2002. Ви-во ВАТ «Поліпринт». С.145-149
- 6. Лизунов П.П. Проектно-векторное управление высшими учебными заведениями/ П.П.Лизунов,

А.А.Белощицкий, С.В.Белощицкая//Управління розвитком складних систем. — 2011. — Вип. 6. — С. 135 — 139.

Статья поступила в редколлегию 11.05.2012

**Рецензент:** д-р техн. наук, проф. Ю.Н. Тесля, Киевский национальный университет строительства и архитектуры, Киев.