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Summary. The algorithm for finite element modeling of fatigue cracks growth in the spatial bodies 
under cyclic loading using semianalytic finite element method (SFEM) is presented. The crack growth 
process is described by Paris' equation, stress intensity factor (SIF) is determined by the direct 
method. Testing of the algorithm is executed on the problem of the development of an elliptical crack 
in a prismatic body under the action of cyclic loading. 
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INTRODUCTION 

 
The determination of bearing capacity of 

responsible structure elements of different 
industries of technique needs for the taking 
into account of initial cracks presence. At the 
static loading a crack growth and further 
swift destruction takes place at exceeding 
fracture mechanics parameters of their criti-
cal values. The other mechanism of destruc-
tion is a result of crack growth under cyclic 
loading condition. A value of fracture me-
chanics parameters (stress intensity factor, 
SIF, in particular), arrived under external 
loading can be substantially less than critical 
one in this case, but cyclic influence of load-
ing causes the gradual increase of crack. The 
life-time of structure element with a crack is 
considered outspent when a crack sizes ac-
quires critical values. Thus, it is of interest in 
this connection to model a crack growth 
process under cyclic loading condition and to 
determine the amount of loading cycles to the 
achievement of critical size a crack. 
The most well-known results of research of 
deformation of spatial bodies with cracks are 
limited of fracture mechanics parameters 

determination [1, 2, 6, 8, 10, 11] or with wide 
range exeperimental results of crack growth 
[12]. Moreover, there is some simplified and 
approximated methodologies for prediction 
of crack growth process: several results are 
known for plane (two-dimensional) problems 
[9, 13], three-dimensional problems has been 
considered using boundary elements method 
[7].  The more accurate results could be 
obtained using numerical techniques for 
stress-strain state analysis, in particular finite 
element method (FEM). Therefore the 
development of algorithms of crack growth 
process under the cyclic loading condition 
and it’s realization using FEM is important 
problem. 
 
 

PURPOSE OF WORK 
 

The purpose of this paper is to highlight 
the main feature semianalytic finite element 
method (SFEM), of the numerical 
techniques of crack growth process 
modeling for spatial prismatic bodies under 
cyclic loading condition, which has been 
developed using SFEM, and to show an 
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example of prognosis of shape and size 
changes of elliptical crack.  

 
 

EQUATION  AND METHODS  
OF  ANALYSIS   

 
Fracture mechanics relations. The crack 

growth process under the cyclic loading con-
dition is characterized with the diagram of 
fatigue failure, that sets correlation between 
crack increment dl  per number of loading 
cycle dN  and change of SIF (or SIF incre-
ment K∆ ). The most well-known approxi-
mation to this  dependence is so-called Paris’ 
relation [1, 12]: 

 
mKC

dN

dl
)(∆= ,  (1) 

 
where: С, m – constants, that is determined 
by material, temperature, environment and 
other loading factors. 

Dependence (1) has some limitation con-
cerned with terms of loading, sizes of details 
and other. Not looking on it, use of (1) allows 
to solve a wide range of practical problem 
about crack growth and life-lime determina-
tion of responsible spatial structure elements 
[12]. 

Semianalytic finite element method 
(SFEM). The solution of spatial bodies 
deformation problems requires significant 
computational expences. The presence of 
crack increases it in times. Besides, a special 
algorithms for calculation of criteria fracture 
mechanic parameter (SIF in particular) and 
for crack growth process modeling are 
required. It is not always possible to solve 
these problems using modern powerful finite 
element software systems (ANSYS, 
ABAQUIS, NASTRAN etc.), based on 
traditional three-dimensional finite element 
problem definition. 

SFEM is an effective instrument for 
numerical modeling of stress-strain state and 
deformation process of canonical form 
spatial bodies - inhomogeneous circle and, in 
particular, prismatic bodies (Fig.1). The term 
"inhomogeneous" is used in the sense of the 
variability of the physical properties along 

the forming. Being based SFEM, a discrete 
calculation model suggests the finite element 
mesh in the cross section of the examined 
object, and one finite element (FE) to be used 
in the orthogonal towards the cross sectional 
plane (along the forming, i.e. 

'3z coordinates). Thus, the FE size and 
configuration in the '3z  direction is the same 
as the body one (Fig.2). 

The main distinctive feature of SFEM is 
using of different approximation function in 
cross-section of the body (in plane  '2'1 zz − ) 
and along '3z coordinates. Thus, the most 
universal representation of displacement 
using local FE coordinate system is: 
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where: )(lϕ  - is the coordination function 
systhems, presented with Laugrange-Michlin 
polynoms. 
 

 
 
Fig. 1. Prismatic inhomogeneous body 
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Fig. 2. Prismatic inhomogeneous finite element 

 
The stress-strained state parameters values 

are calculated in integration point Km. along 
'3z coordinates. The quantity of integration 

point depends of heterogeneity distribution of 
stress-strain parameters along '3z coordinates 
and determined on the basis of study of the 
convergence of  obtained solution. 

SFEM allows significantly reduce the 
computational expenses for solving of spatial 
problem, particularly on the stages of stiff-
ness matrix calculating and FEM linear equa-
tions systems solving. The efficiency and ac-
curacy of the method is shown for a wide 
range of linear and nonlinear problems of 
mechanics [3-5], where readers can also find 
a more detailed description of the method 
features, its implementation and links to ad-
ditional author’s publications. 

 
 
FINITE ELEMENT ALGORITHMS  
 FOR FRACTURE MECHANIC’S 

PROBLEM SOLUTION  
 

At the numerical decision of a crack 
growth problem under the cyclic loading 
condition the loading process presents 
with the sequence of steps after the cycles 
of application of the external loading. 
Corresponding discrete presentation of 
equation (1) for description of cracks 
growth has a next kind:  

( )ml
C K

N

∆ = ∆
∆

,  (2) 

where: l∆ – an increase of characteristic 
crack’s sizes in the certain point of front for 
the amount of cycles of loading N∆ . 

At implementation of numeral integration 
of (2) provides calculation of follow values at 
each step: 
- the  SIF value ( )i

IK l  in each point of crack 

front on the basis of results of the stress-
strained state determination of body with a 
crack: 
-  the corresponding values of increase of 
characteristic sizes of crack after N∆  cycles 
in every point of front i (i=1..k):  

 

( )( )
bi i

m I ml C K l N∆ = ∆ .  (3) 

 
- the characteristic sizes of crack i

ml   at every 

step m using sizes of crack on a previous step 

1
i
ml −  taking into account their increases iml∆ : 

1
i i i
m m ml l l−= + ∆ .  (4) 

- the new coordinates of nodes of crack 
front are and of other nodes of FE model.   

Consider the above procedure for the case 
of three-dimensional body.  

In case of the spatial stress-strained state 
the curvilinear front of crack (shown on Fig.3 
by a thick solid line) is approximated by the 
segments of polygon (shown on fig.1 by a 
stroke line), that consistently connect the 
nodes of discrete model, that located on the 
crack’s front. Amount of this nodes is deter-
mined on the basis of convergence of nu-
meral decision of problem about the stress-
strained state of body with a crack and 
achievement of necessary exactness of de-
termination of SIF distribution along front of 
crack. 

In case of consideration of curvilinear 
cracks front, the  SIF values  and increases of 
characteristic sizes of crack, that is calculated 
on a formula (3), are variables along front. 
Accordingly, at every solution step the con-
figuration of crack front  changes.  
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Fig. 3. The FE element discritization of the crack 
front and coordinates of front points:   front of 
crack (1) and near-tip area (2) on the step of m; 
front of crack (3) and near-tip area (4) on a step 
m+1 

 
A calculation of the  SIF value ( )i

IK l   

executed by a direct method. It provides to 
use of obtained with finite element solution 
stress and displacement distribution near 
crack front (tip at two-dimensional case).   
The stress and displacement components, 
being oriented along the normal to the sur-
face (front of crack) used in the most com-
monly sold type of fracture - normal separa-
tion crack, or crack of type I, Fig.4 [8].  

 

 
 
Fig. 4. Crack of type I (the normal separation 
crack) 

 
SIF calculation executed separately from 

the values of stress ( )IК σ  and displacement 

( )IК u  using well-known dependences : 
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,   (5) 

 
where: r, θ – point  (nodes) coordinates 
(Fig.4). 

SIF calculations executes within the limits 
of near-tip area of square form, with topologi-
cal sizes of 6х6 FE. The size of  FE accepted as 
1/10 of characteristic size of crack lсr. The half 
of the marked near-tip area is examined for the 
case of the normal separation crack as a result 
of symmetry of distribution of stress-strain pa-
rameters in relation to the surface of crack. The  
description of crack location executed with 
boundary condition - absence of displacements 
in the nodes on plane of symmetry. Thus in  
prismatic bodies with transversal cracks (sur-
face of crack is normal to '3z coordinates) the 
size of  near-tip area in direction, normal to the 
surface of crack is equal to 0,3

тр
l  (Fig.5).  

 
Fig. 5. The near-tip area for SIF calculation  
 

SIF has been calculated after displacements 
( ( )IК u ) in part of area, that borders  from  a  

crack surface (in points, marked by crosses on 
Fig.5). SIF has been calculated after stresses  
( ( )IК σ ) in part of area, that that is located af-

ter front of crack (in points, marked by rounds 
on Fig.5).  

Within the limits of each of the marked 
parts of near-tip area a mean SIF value after 
tensions av( )IК σ  and after displacements 

av( )IК u  are determined. Then this two values 

averaged in turn for determination resulting 
SIF value 

І
K : 

 

av av( ) (u)

2
І І

І

K K
K

σ += . (6) 
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At consideration of body with transversal 

crack SIF calculation is conducted in a cer-
tain amount of points along crack front. Their 
location coincides with nodes of FE model. 
Since SIF after displacements are calculated 
at the nodes (for example, crossection 1-1, 
Fig.6), and SIF after stresses - in the center of 
finite element (crossections 1’-1’ і 2’-2’, 
Fig.6), it is necessary to account for SIF after 
stresses in the two adjacent to FE nodes. This 
procedure is illustrated in Fig. 6 and with the 
following formulas: 

 

[ ] [ ]av av1 1'
( ) ( )I IК Кσ σ=   (7) 

 

[ ]
[ ] [ ]av av1' 2'

av 2

( ) ( )
( )

2

I I
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К

σ σ
σ

+
=    (8) 

 

 
 
Fig. 6. Points of SIF calculation prismatic bodies 
 

Calculation of coordinates '( )k i
mz  of node  

i of crack front on the step m executed after 
the values of increases of crack length iml∆  

(3) in front points after next formulas (Fig.3): 
 

' ' '
1( ) ( ) ( )k i k i k i

m m mz z z+ = + ∆ , 

           ' '( ) cos( )k i i k i
m m mz l φ∆ = ∆  ,  (9) 

 
where: 'kφ – a corner is between direction to 

the axis 'kz  and by direction of movement of 
points of crack front: 

 
2' 1 2' 1

1'
1' 1 1' 1

( ) ( )
2 2 ( ) ( )

i i
m m
i i
m m

z z
arctg

z z
π πφ α

− +

+ −

 −= − = −  − 
2' 1'

2
πφ φ= − .        (10) 

 
The change of all nodes of near-tip area 

executed on identical dimensions, calculated 
by after correlations (9), (10) along the line,  
that is normal to the front of crack. This line 
is passes through a point of front. It allows to 
save the characteristic sizes of FE of near-tip 
area during a crack increase. 

The change of location of nodes, that lie 
outside of near-tip area on the same distance 
in the case of modeling of crack growth in 
the finite size bodies leads to the formation 
of degenerate FE at the boundary of the 
body, as illustrated in Fig.7,a. It was sug-
gested  to overcome this problem, to displace 
of nodes of a discrete model within near-tip 
area size on crack increment and to displace 
nodes outside of near-tip area to a distance 
that decreases linearly inverse-proportional 
to the distance from each node to the crack 
tip (Fig. 7,b). This method is more complex 
in terms of implementation, but it allows to 
get rid of the problem of the formation of de-
generate FE. 

 

а) 

 

b) 

Fig. 7. Type of fragment of discrete model after 
crack growth: at the displace all the nodes on 
identical distances (а); at the displace the nodes 
on different distances with application of linearly 
inverse-proportional reduction (b) 

 
 

RESULTS OF FINITE ELEMENT 
MODELING OF FRACTURE  
DUE TO CRACK GROWTH  

 
The approbation of algorithm of crack 

growth modelling in spatial bodies was con-
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ducted on an example about growth of initial 
elliptic crack in  an endless prismatic body un-
der the action of the cyclic loading. (Fig.8, 
a=0.6, b=0.4 ). 

 
 
Fig. 8. An endless body is with an elliptic crack 
 

As the examined object has three planes of 
symmetry, a discrete model is built for a 1/8 
part of  body (Fig.9).  

 

  
 
Fig. 9. A discrete model of SFEM for an endless 
body with an elliptic crack 
 

The distribution of SIF  along the front of 
initial crack, obtained with consideration of 
SFEM solution convergence on quantity of 
FE in cross-section mesh and on quatity of 

polynoms )(lϕ  in displacement distribution, 
is snown on Fig.7. It well comports with 
standard values of with well-known analytical 
decisions [6]. Thus, it could be expected, that 
firther modeling of crack growth would be cor-
rect. 

 
 
Fig. 10. Distribution of SIF along the initial front 
of crack 

 
The values of constant of Paris’ equation 

for crack growth description were accepted 
the next: 4b = , 101.63 10C −= × , that corre-
spondents to stell in normal temperature con-
dition. 

During realization of algorithm of crack 
growth modeling two alternate variants of 
changing of configuration of discrete model 
was studied. According the first one  it is 
considered, that crack growth at every step 
takes place in ortogonal direction to current 
configuration of crack front. Realization of 
this supposition on a discrete model sug-
gested, that the value of crack increases i

ml∆  

is put aside along a line, which is ortogonal 
to the segment, that connects (і-1)m and 
(і+1)m points of front. According to the sec-
ond variant crack growth at every step con-
sidered after a perpendicular to front of initial 
crack. In this case the value of crack in-
creases i

ml∆  in points front is put aside along 

a line, ortogonal to the segment that connects 
points  і-1  and  і+1  of initial front of crack. 

Verification of authenticity of application 
of foregoing suppositions was made on the 
basis of analysis of results convergence at 
successive reduction to the step after the 
some amount of loading cycles and on it co-
incidence of final result with the data given 
in [6].  

Results testify that convergence of step-
by-step algorithm of problem solution de-
pending after the size of step ∆N  is more bet-
ter at application of the first variant. The dif-
ference between the characteristic sizes of 
crack, calculated after 24 and 48 steps of 
problem solution, which corresponds 
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830 10×  cycles of loading is not significant 
and folds 2.6% for the first variant and 1.1% 
for second variant. However, the final char-
acteristic sizes of crack after 48 steps differ 
on 14% for two variants. Dependence of er-
ror of length of crack calculation at M steps 
of problem solution in relation to the charac-
teristic sizes of crack, certain at 48 steps for 
the front points, that is located on lines along 
axes z1’ (θ=0°) z2’ (θ=90°) for the first variant 
shown on a Fig 11. The general view of con-
figuration of crack front and near-tip area 
after 830 10×  cycles by comparison to initial, 
shown on Fig.12. 

 
 
Fig. 11.  A relative error of length of crack calcu-
lation  

 
As as can be seen from Fig.12 the selec-

tion of algorithm significantly affects not 
only the quantitative growth of the crack (the 
number of cycles and the characteristic sizes) 
but also on the final configuration of the 
front. According to work [6] by conclusions, 
growth of initial elliptic crack will come true 
so that configuration of front will head for a 
circle. The marked reasoning is fully con-
firmed that the modeling of crack growth  in 
every point should be in a direction orthogo-
nal to current configuration of front (Fig.12, 
а). In another case, configuration of front 
crack takes shape of ellipse, prolonged in di-
rection orthogonal to the initial location of 
front of crack (Fig.12, b). 

 
а) 

  

б) 

Fig. 12.  Configuration of crack front and near-
tip area of discrete FE model at application of the 
first (а) and second (b) variants of algorithms 

 
Further decision of problem has shown, 

that  the crack front in future transformed to 
circle shape and the process of crack growth 
occurs rapidly (Fig. 13). 

 
Fig. 13. Configuration of crack front after  N of 
loading cycles:  1- initial crack (N=0), 2 – 
N=16*108; 3– N=20*108; 4– N=24*108; 5–
N=32*108;  6– N=48*108;   7– N=56*108 
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CONCLUSIONS 
 

1. The developed algorithm of 
restructuring of FEM discrete model 
provides the ability to reliably modeling 
crack growth. Numerical results of solving 
the test problem coincides with the calculated 
results of other authors. 

2. Applied assumptions about the 
development of cracks in a direction 
orthogonal to its current configuration 
dozvolyayuye adequately simulate the 
process of crack growth in spatial bodies 
which are characterized by a curved crack 
front configuration and variability values SIF 
along the crack front. 
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МОДЕЛИРОВАНИЕ РАЗВИТИЯ ТРЕЩИН  
В ПРОСТРАНСТВЕННЫХ ТЕЛАХ ПРИ 

ЦИКЛИЧЕСКОЙ НАГРУЗКЕ 
 

Аннотация. В статье представлен 
алгоритм конечноэлементного моделирования 
развития усталостных трещин в прост-
ранственных телах при циклическом нагру-
жении. Механизм развития трещины описы-
вается уравнением Пэриса. Коэффициенты 
интенсивности напряжений на каждом шаге 
задачи определяются прямым методом. 
Апробация алгоритма выполнена на задаче о 
развитии эллиптической трещины в призма-
тическом теле под действием циклической 
нагрузки. 
Ключевые слова: циклическая нагрузка б 

трещина, механика разрушения, ресурс, 
пространственная задача, ароуаналитический 
метод конечных элементов (ПМКЭ). 


