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Modeling of Crack Growth Process in Spatial Bodies
Under Cyclic Loading Condition
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Summary. The algorithm for finite element modeling of fatigue cracks growth in the spatial bodies
under cyclic loading using semianalytic finite element method (SFEM) is presented. The crack growth
process is described by Paris' equation, stress intensity factor (SIF) is determined by the direct
method. Testing of the algorithm is executed on the problem of the development of an elliptical crack
in a prismatic body under the action of cyclic loading.
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determination [1, 2, 6, 8, 10, 11] or with wide
INTRODUCTION range exeperimental results of crack growth
[12]. Moreover, there is some simplified and
The determination of bearing capacity capproximated methodologies for prediction
responsible structure elements of differeiof crack growth process: several results are
industries of technique needs for the takirknown for plane (two-dimensional) problems
into account of initial cracks presence. At th[9, 13], three-dimensional problems has been
static loading a crack growth and furtheconsidered using boundary elements method
swift destruction takes place at exceedir[7]. The more accurate results could be
fracture mechanics parameters of their critobtained using numerical techniques for
cal values. The other mechanism of destrustress-strain state analysis, in particular finite
tion is a result of crack growth under cycliielement method (FEM). Therefore the
loading condition. A value of fracture me-development of algorithms of crack growth
chanics parameters (stress intensity fact(qprocess under the cyclic loading condition
SIF, in particular), arrived under externgand it's realization using FEM is important
loading can be substantially less than critic problem.
one in this case, but cyclic influence of load-
ing causes the gradual increase of crack. The
life-time of structure element with a crack i PURPOSE OF WORK
considered outspent when a crack sizes ¢
quires critical values. Thus, it is of interest it  The purpose of this paper is to highlight
this connection to model a crack growtlthe main feature semianalytic finite element
process under cyclic loading condition and tmethod (SFEM), of the numerical
determine the amount of loading cycles to tFrtechniques of crack growth process
achievement of critical size a crack. modeling for spatial prismatic bodies under
The most well-known results of research ccyclic loading condition, which has been
deformation of spatial bodies with cracks ardeveloped using SFEM, and to show an
limited of fracture mechanics parameters
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example of prognosis of shape and siz¢éhe forming. Being based SFEM, a discrete
changes of elliptical crack. calculation model suggests the finite element
mesh in the cross section of the examined
object, and one finite element (FE) to be used
EQUATION AND METHODS in the orthogonal towards the cross sectional
OF ANALYSIS plane (along the forming, i.e.
_ _ 2* coordinates). Thus, the FE size and
Fracture mechanics relations. The crack configuration in thez® direction is the same
growth process under the cyclic loading cong the body one (Fig.2).
dition is characterized with the diagram of The main distinctive feature of SFEM is
fatigue failure, that sets correlation betweeﬂsing of different approximation function in
crack incrementdl per number of loading . . C
cross-section of the body (in plang" - z?)

cycle dN and change of SIF (or SIF incre- 3 _
ment AK ). The most well-known approxi- and along z° coordinates. Thus, the most

mation to this dependence is so-called Parigniversal representation of displacement

relation [1, 12]: using local FE coordinate system is:
A k) D) Un= X 2 Unssy Lsu+lses
dN ’ S1=1S,=%1 2 2

12,1

where: C, m — constants, that is determined +SSXX +zj’

by material, temperature, environment and

other loading factors. L

Dependence (1) has some limitation con- Ug = zu;.q)(') ,
cerned with terms of loading, sizes of details 1=0

and other. Not looking on it, use of (1) allows

to solve a wide range of practical problenwhere: ¢ - is the coordination function
about crack growth and life-lime determinagysthems, presented with Laugrange-Michlin
tion of responsible spatial structure elemeniso|ynoms.
[12].

Semianalytic  finite element  method ot (o
(SFEM). The solution of spatial bodies 4=9(z')
deformation problems requires significant iy
computational expences. The presence of
crack increases it in times. Besides, a special
algorithms for calculation of criteria fracture
mechanic parameter (SIF in particular) and
for crack growth process modeling are
required. It is not always possible to solve
these problems using modern powerful finite
element software systems (ANSYS,
ABAQUIS, NASTRAN etc.), based on z3' i
traditional three-dimensional finite element -
problem definition. 22

SFEM is an effective instrument for
numerical modeling of stress-strain state arfelg. 1. Prismatic inhomogeneous body
deformation process of canonical form
spatial bodies - inhomogeneous circle and, in
particular, prismatic bodies (Fig.1). The term
"iInhomogeneous” is used in the sense of the
variability of the physical properties along
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where: Al— an increase of characteristic
crack’s sizes in the certain point of front for
the amount of cycles of loadinggN .

At implementation of numeral integration
of (2) provides calculation of follow values at
each step:

-the SIF valueK, (I') in each point of crack
front on the basis of results of the stress-
» strained state determination of body with a
léza crack:
47 - the corresponding values of increase of
characteristic sizes of crack aftAN cycles
Fig. 2. Prismatic inhomogeneous finite element N every point of front (i=1..k):

Km: Hm, (P3),,(P3),,

The stress-strained state parameters values Al = C(K| (|i))b AN . 3)
are calculated in integration poiHt, along " "

2% coordinates. The quantity of integration_th haracteristic i ¢ cratk at
point depends of heterogeneity distribution of € characteristic sizes of cralik at every

stress-strain parameters alomgjcoordinates stepm using sizes of crack on a previous step

and determined on the basis of study of thle— taking into account their increasak, :

convergence of obtained solution. Il=1  +Al . 4
SFEM allows significantly reduce the _ e new coordinates of nodes of crack

computational expenses for solving of spatig}ont are and of other nodes of FE model.

problem, particularly on the stages of stiff-  consider the above procedure for the case
ness matrix calculating and FEM linear equass ihree-dimensional body.

tions systems solving. The efficiency and ac- |, case of the spatial stress-strained state

curacy of the method is shown for a widne cyryilinear front of crack (shown on Fig.3
range of linear and nonlinear problems oy 5 thick solid line) is approximated by the
mechanics [3‘-5], where‘ rgaders can also fi gments of polygon (shown on fig.1 by a
a more detailed description of the methodigke Jing), that consistently connect the
features, its implementation and links t0 adygges of discrete model, that located on the
ditional author’s publications. crack’s front. Amount of this nodes is deter-
mined on the basis of convergence of nu-
meral decision of problem about the stress-
strained state of body with a crack and
achievement of necessary exactness of de-
termination of SIF distribution along front of

) . crack.
At the numerical decision of a crack |, case of consideration of curvilinear

growth problem under the cyclic loading. ks front, the SIF values and increases of
condition the loading process presentg,aracteristic sizes of crack, that is calculated
with the sequence of steps after the cycles, 5 formula (3), are variables along front.

of application of the external loading.accordingly, at every solution step the con-
Corre_spondlng dlscrete_ presentation (ﬁguration of crack front changes.
equation (1) for description of cracks

growth has a next kind:
Al

m=C(AK)m, (@)

FINITE ELEMENT ALGORITHMS
FOR FRACTURE MECHANIC'S
PROBLEM SOLUTION
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[orr u. G
K (u)=,— , (5)
r sineiz—zs—co%ej
2 2

where: r, 6 — point (nodes) coordinates
(Fig.4).

SIF calculations executes within the limits
of near-tip area of square form, with topologi-
cal sizes of 86 FE. The size of FE accepted as
1/10 of characteristic size of cratk The half
of the marked near-tip area is examined for the
Fig. 3. The FE element discritization of the craci€ase of the normal separation crack as a result
front and coordinates of front points:  front ofof symmetry of distribution of stress-strain pa-
crack (1) and near-tip area (2) on the stepnpf rameters in relation to the surface of crack. The
front of crack (3) and near-tip area (4) on a stegescription of crack location executed with
m+1 boundary condition - absence of displacements

_ in the nodes on plane of symmetry. Thus in

A calculation of the SIF valuK, (I') prismatic bodies with transversal cracks (sur-

executed by a direct method. It provides tface of crack is normal ta® coordinates) the
use of obtained with finite element solutiorsize of near-tip area in direction, normal to the
stress and displacement distribution ne&urface of crack is equal @3l,, (Fig.5).
crack front (tip at two-dimensional case). _
The stress and displacement components, z3 1"

T y I 0.31,,

2T’

being oriented along the normal to the sur-
face (front of crack) used in the most com-
monly sold type of fracture - normal separa-

F1
Q

! | P IoTeTe
tion crack, or crack of type 1, Fig.4 [8]. |L 4 X xD|0|E
x x x xoloje{ |
TP. 0.11 » .'-'"'2"
: vt Y3:,- Fig. 5. Thenear-tip aredor SIF calculation
;_:___ é B" .
Wy y2 SIF has been calculated after displacements
L - - — (K, (u)) in part of area, that borders from a
l 5 crack surface (in points, marked by crosses on

Fig.5). SIF has been calculated after stresses

Fig. 4. Crack of type | (the normal separatior K (0)) in part of area, that that is located af-
crack) ter front of crack (in points, marked by rounds
on Fig.5).
SIF calculation executed separately from Within the limits of each of the marked
the values of stres&’, (o) and displacement parts of near-tip area mean SIF value after

K, (u) using well-known dependences :  tensions K, (o) and after displacements
K, (u) are determined. Then this two values

B ar't' 2 averaged in turn for determination resulting

K, (0) = 9 30 SIF valuek, :
co&(1+ sin- sn%j
2 2 2
+
K[ — Klav(a-)2 Klav(u) . (6)
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At consideration of body with transversal (2%)*—(z2?)+t
crack SIF calculation is conducted in a cerd :%—a:%—arctg( A Ry injlj
tain amount of points along crack front. Their (Z)n = (20
location coincides with nodes of FE modelg” :gal'—%. (10)
Since SIF after displacements are calculated
at the nodes (for example, crossection 1-1,

E%gi]t.g)’sg(rjngrqt: azitreorsztéits;iss-|1r’1_§?e2?_ezr’1ter 8;(ecuted on identical dimensions, calculated
' .. by after correlations (9), (10) along the line,

Fig.6), it IS necessary .to account for SIF aft%at is normal to the front of crack. This line
stresses in the two adjacent to FE nodes. This

L i ) iS"passes through a point of front. It allows to
Fgﬁg@?nu;o'rsn:lﬁl]:gated in Fig. 6 and with th%ave the characteristic sizes of FE of near-tip
' area during a crack increase.

The change of location of nodes, that lie

[ K, av(o—)] . :[ K, av(U)] . (7) outside of near-tip area on the same distance
in the case of modeling of crack growth in
the finite size bodies leads to the formation

[Klav(a)] 1-+[Kl av(a')] , of degenerate FE at the boundary of the
[Ki ()], = (8) body, as illustrated in Fig.7,a. It was sug-
gested to overcome this problem, to displace
of nodes of a discrete model within near-tip
area size on crack increment and to displace
nodes outside of near-tip area to a distance
that decreases linearly inverse-proportional
to the distance from each node to the crack
tip (Fig. 7,b). This method is more complex
in terms of implementation, but it allows to
get rid of the problem of the formation of de-
generate FE.
crack

SIF calculation points
p a)

The change of all nodes of near-tip area

crack front

Fig. 6. Points of SIF calculation prismatic bodies | | [l]HH ‘ | | ‘ | ‘ | | ‘ | | | | ‘ | | |
b)

H H K"y i
. Calculation of coordinate¢z’),, of node Fig. 7. Type of fragment of discrete model after
i of crack front on the stem executed after crack growth: at the displace all the nodes on

the values of increases of crack Iengmjn identical distancesa); at the displace the nodes

(3) in front points after next formulas (Fig 3).on different distances with application of linearly
“““inverse-proportional reduction (b)

(2 = (Z) 1 + (BZ)
(0Z€) =l cos@' )., (9) RESULTS OF FINITE ELEMENT
MODELING OF FRACTURE

where: ¢/’ — a corner is between direction to DUE TO CRACK GROWTH

the axisz and by direction of movement of The approbation of algorithm of crack
points of crack front: growth modelling in spatial bodies was con-
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ducted on an example about growth of initic ;
elliptic crack in an endless prismatic body ur '
der the action of the cyclic loading. (Fig.8 os e
a=0.6, b=0.4). =T

086

1 = G.Cherepanov, [6]

| === SFEM

0" 10 20 30 40 50 60 70 80 906°

-
%’J' Fig. 10. Distribution of SIF along the initial front

of crack

The values of constant of Paris’ equation
for crack growth description were accepted
the next:b=4, C=1.63x10", that corre-
spondents to stell in normal temperature con-

Fig. 8. An endless body is with an elliptic crack dition.
During realization of algorithm of crack
As the examined object has three planes gfowth modeling two alternate variants of
symmetry, a discrete model is built for a 1/8hanging of configuration of discrete model

part of body (Fig.9). was studied. According the first one it is
. considered, that crack growth at every step
zZ A A A A oA takes place in ortogonal direction to current
N configuration of crack front. Realization of
=1 this supposition on a discrete model sug-
T 7 gested, that the value of crack increasis
' g is put aside along a line, which is ortogonal
'. A to the segment, that connecfsl), and
- .'..“ L (i+1)m points of front. According to the sec-
,'w“ ‘ - ond variant crack growth at every step con-
%‘\\X“\‘ ‘ >~z sidered after a perpendicular to front of initial
ET M}\&j}ﬁ?}‘\‘\l\“_‘,‘,‘l‘ 3 crack. In this case the value of crack in-
T ' creasesAl,, in points front is put aside along
Pl 3 L a line, ortogonal to the segment that connects

points /-1 and i+1 of initial front of crack.
Fig. 9. A discrete model of SFEM for an endless  Verification of authenticity of application
body with an elliptic crack of foregoing suppositions was made on the
basis of analysis of results convergence at
The distribution of SIF along the front ofsuccessive reduction to the step after the
initial crack, obtained with consideration ofsome amount of loading cycles and on it co-
SFEM solution convergence on quantity oincidence of final result with the data given
FE in cross-section mesh and on quatity o [6].

polynoms 4% in displacement distribution,  Resuits testify that convergence of step-
is snown on Fig.7. It well comports withpy-step algorithm of problem solution de-
standard values of with well-known analyticabending after the size of stel is more bet-
decisions [6]. Thus, it could be expected, thaér at application of the first variant. The dif-
firther modeling of crack growth would be corference between the characteristic sizes of
rect. crack, calculated after 24 and 48 steps of
problem solution, which corresponds
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30x10¢ cycles of loading is not significant z"
and folds 2.6% for the first variant and 1.1%
for second variant. However, the final char-
acteristic sizes of crack after 48 steps differ
on 14% for two variants. Dependence of er-
ror of length of crack calculation at M steps
of problem solution in relation to the charac-
teristic sizes of crack, certain at 48 steps for
the front points, that is located on lines along
axesz' (8=0').2%(8=90) for the first variant

shown on a Fig 11. The general view of con-
figuration of crack front and near-tip area

z?

N=0 (initial crack front)

after 30x 10 cycles by comparison to initial, r a)
shown on Fig.12.
B(%)
G
\ ‘ ‘ N=30%108
TN — 6=90
) \\ ----- 0=0
3 \.
5 ta, \\"--.._
- "--...,_‘““
1 - T
T==--_. ] 22'
0 M N=0 (initial crack front)
53 g 10 12 14 16 18 20 22 24
6)
Fig. 11. Arelative error of length of crack calcu- Fig. 12. Configuration of crack front and near-
lation tip area of discrete FE model at application of the

first (a) and second (b) variants of algorithms
As as can be seen from Fig.12 the selec-

tion of algorithm significantly affects not Further decision of problem has shown,

only the quantitative growth of the crack (théhat the crack front in future transformed to

number of cycles and the characteristic sizesiycle shape and the process of crack growth
but also on the final configuration of theoccurs rapidly (Fig. 13).

front. According to work [6] by conclusions,
growth of initial elliptic crack will come true
so that configuration of front will head for a —

circle. The marked reasoning is fully con- 1

firmed that the modeling of crack growth in

every point should be in a direction orthogo-

nal to current configuration of front (Fig.12, o \

z'

a). In another case, configuration of front

crack takes shape of ellipse, prolonged in di- ﬂ 5
rection orthogonal to the initial location of g
front of crack (Fig.12, b). R \

| Z

«

Fig. 13. Configuration of crack front afteN of
loading cycles: 1-initial crackNc0), 2 —
N=16*10"; 3—-N=20*1C%, 4—N=24*10% 5—
N=32*10%; 6-N=48*1C0°; 7—-N=56*1C"
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CONCLUSIONS plates under single-axis loading condition.
Tp. NGASU Proc., 2002, Nr 1, 22-31.
1. The developed algorithm of10.Savruk M.P. 1988. Fracture mechanics and

restructuring of FEM discrete model strength of r_naterigls: Right. l_\/IanuaI_, VoI._2:
provides the ability to reliably modeling The stress  intensity factors in bodies with
crack growth. Numerical results of solving cracks Kiyv, Naukova Dumka, 1988, 620.

L ; 1.Sharan Shailendra K. 2000. Elasto-plastic
the test problem coincides with the Calculate%i finite element analysis of a crack in an infinite

results of other authors. plate: Int. J. Fract. 2000. 103, Nr 2, 163-176.
2. Applied assumptions about thejpTroschenko V.T., Pokrovsky V.V.,
development of cracks in a direction Prokopenko A.V. 1987. Crack resistance of

orthogonal to its current configuration metals under cyclic loading conditioKiyv,
dozvolyayuye adequately simulate the Naukova Dumka, 1987, 257.

process of crack growth in spatial bodied3.Yonglin Xu. 1998. Self-similar crack
which are characterized by a curved crack expansion method for two-dimensional cracks

front configuration and variability values SIF ~ under mixed mode loading conditions: Eng.
along the crack front. Fract. Mech., 1998, 59, Nr 2, 165-182.
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