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Abstract. Presented is the research of the stability of portal frames made of variable I cross-
sections, depending on supports fastening factors and frames elements unfastening. In the process of
mathematical research examined were five different cases of fixing columns nodes of portal frames
resiliently mounted in each case, the stability criteria having been defined. In addition, conducted
were studies to determine the coefficients of the portal frames elements effective length calculation in
finding critical load on the column. Coefficients of the effective length factor of the welded variable I
cross-section columns have been obtained. The influence of brace systems on stiffening of the whole
structure, stability of the unit frames as well as the overall stability of the building with computer
simulation and calculation have been studied, the coefficients of the influence of the frame structure
on the stability of the unit frames having been obtained.
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Introduction

The buckling of members of portal frame undoubtedly belongs to the
important problems of designs of steel constructions [I, 53, 54,
Timoshenko, S.P. (1908)]. The variable cross-section columns are an effective
element. Therefore, today the research of stability loss and the theoretical
research of Stability analysis of tapered elements should be more extensive. It is
necessary to obtain more numerical examples of critical buckling load and to
develop methods of calculating effective length factor.

Portal frames members buckling undoubtedly belongs to the range of
important problems of steel constructions design [1, 5, 6, 9, 11, 12, 14, 15, 25]
and [33, 34, 35, 38, 45, 46, 48, 57, 58]. The variable cross-section columns are
an effective element.

Therefore, development of a consistent buckling design procedure for tapered
columns is great importance [28, 29, 41]. The first works of studying buckling
analysis of elements of variable cross-section were written by Dynnyk A. and
Morley A. [17, 18, 19, 34, 46]. A. Dynnyk has reduced the governing differential
equation for buckling columns with wvariable cross-section to the linear
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differential equations differential equation with variable coefficients. The
solution of the governing equation is obtained due to Bessel functions by
Gringhila method (The applications of elliptic functions (London, 1892). The
main results of these studies were translated in English by Malets (1925) [34].

Today the Bessel functions used to solve problems of loss stability of tapered
elements are well known [6, 7, 8]. Out-of-rotation plane bending vibrations of a
rotating tapered beam with periodically varying speed are presented in work
[13]: “the integro-partial differential equation of the beam is discredited via
Galerkin's method and a set of ordinary differential equations with periodic
coefficients (Mathieu—Hill type equations) is obtained”.

An approximate method was proposed for analyzing the problem of beams of
variable cross-section in article [4, 20, 42].

Articles [21, 22, 23, 24, 25] present a number of stability problems for
columns and simple frames that have a post and a variable cross-section of non-
uniform members. A free vibration of axially functionally graded beams with
non-uniform cross-section studies in [30]. Buckling analysis of non-uniform and
axially graded columns with varying flexural rigidity present in [3, 31, 35, 36,
39, 40, 44, 48]. The new numerical method is proposed [34] for the dynamic and
stability analysis of elastic plane structures consisting of beams with constant
width and variable depth. In this article [37] a generalized finite element for
buckling analysis of tapered columns with various cross sections is established
by using Chebyshev polynomial approach to the governing differential equation.
The heterogeneous prismatic finite element with variable cross sectional area and
taking into account the variability of components of metric tensor are presents in
[10], prismatic finite element used for studies and analysis of non-uniform
elements. In article [2] the solution of an ordinary differential equation of the
fourth order with variable coefficients is used the approach using power series is
given. The exact elastic stability functions for any general non-prismatic beam-
column element with a uniform tensile or compressive axial force are obtained.

Bazeos, N. and Karabalis, D.L. [11] developed the approximate method for
quick calculation of the critical load of tapered columns. The method is based on
a series of dimensionless design-oriented charts related the critical load of
linearly tapered columns of I-section to the taper ratio and boundary conditions.

Coskun, S.B. and Atay, M.T. use variation iteration method for research
critical buckling load for elastic columns of constant and variable cross-sections
[16]. The work of Huang Y. and Li X.F. authors have reduced the governing
differential equation for buckling of columns with varying flexural rigidity to
Fredholm integral equation [31].

In the work [39] the buckling of a non-uniform column with spring supports
under combined concentrated and distributed loads is presented. The governing
equation for buckling of a one-step non-uniform column is reduced to Bessel
equations and other solvable equations for 13 cases, several of which are
important in engineering practices.

In the method [43] Ozay, G. and Topcu, A. proposed a general stiffness
matrix for non-prismatic members that is applicable to Timoshenko beam theory
has been derived. The stiffness coefficients have been determined for constant,
linear, and parabolic height member’s variations, employing analytical and
numerical integration techniques.
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Rezaiee-Pajand M., Shahabian F., Bambaeechee for simple frames presented
methodology to determine critical load and effective length factor for buckling of a
frame with tapered and prismatic columns [46]. The combined effect of the shape
factor, taper ratio, elastic bracing system, and joint flexibility on the critical
buckling load, buckling length factor of portal steel frames are considered.

In article [47] the method calculating of the critical buckling load of portal
frames consisting of linearly tapered members is presented. Values of the factor
of the estimated length of columns with fixed supports of portal frames The
factor of the estimated length of the columns of the portal frame with hinged
supports is obtained.

Elastic buckling loads of columns with variable cross-section has been
studied due in the works [49, 50, 51, 52, 55].

In the research of Wei, D.J., Yan, S.X., Zhang, Z.P., and Li, X.F. [59] of
critical load for buckling of non-prismatic columns under self-weight and tip
force the governing equation subject to associated boundary conditions is
transformed into an integral equation. Critical buckling load is then determined
as the lowest value of the resulting integral equation.

A new shape function for tapered three-dimensional beams with flexible
connections was obtained due to the analysis of Valipour, HR. and
Bradford, M.A. [56].

Non-linear post buckling analysis of frames and columns with was made in
the works [5, 60, 61].

The effects of shear deformations are taken into account in the stability
analysis for variable cross-section columns based on Timoshenko theory and the
energy method in theoretical analysis [1, 10, 55].

These researches of rods buckling were conducted due to L. Euler’s, the first
work [26].

Foundation of the problem. Defining sustainability criteria and coefficients
of the effective length of the elements of portal frames, taking into account
elasticity of supports when calculating a flat buckling are important issue in
designing of steel construction.

Methods of research. To research the buckling criteria of portal frames and

calculating the coefficients of
the effective length of columns

A mathematical modeling method
= ] ‘:-—-__Q _,'::B was used. General view of the
LN ey structure model is shown in
= Vi Figure 1.

w7 S | .
T.T__ﬁ_ //\7;.-- ; B Results. In Figure 2 was
| —r ‘ considered a portal frame
- \\] (Figure 1) buckling resistance
V' with the columns of I-shaped
o o J\‘ cross-section with variable web
_ s height and the girder with
Fig. 1. General view of the model constant  cross-section.  The

frame has a span — L and
column height — /. The column stiffness of /-shaped cross-section with variable
web height considerably precise is written by the parabolic regularity if the
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correlation of least cross-
section moment inertia
I, to the largest cross-
section moment inertia
I is situated in diapason
L/lo=0.1...0.95. /
Five cases of
buckling column with /
variable cross-section on
elastic  support were
studied.
Function [, =1.(z)

is the moment of inertia
of the wvariable cross-

section is approximation
tapered columns with I- Fig. 2. Cases of resistance centrally compressed rods with
variable cross section on elastic supports: (a) - case 1; (b) - case 2

V4

(@

section for steel portal
frames. The I,, of the columns has approximation by the following parabolic
function.

2
]xzzlx(z)zle(l_Yytz) ; Yy=1_1x11/1x09 (1
where [, — is a maximum moment of inertia of variable cross-section of

member with coordinate zy = 0, /,, — is moment of inertia with of minimum

section dimensions, which has coordinate z,= 1.

We took the hypothesis: deformation of the column is satisfactorily described
by the Bernoulli—Euler theory [53], and was acceptance the assumption that the
load is applied only at the nodal points.

The bending moment at any cross section is

I
(nz_nO)N-‘-MxO_sz-‘-QTO%: > (2)

where M . —bending moment at any cross section, M ,, — bending moment at cross

section with coordinate zo = 0, N — is a constant axial compressive load, O, — shear
force at cross section with coordinate zy = 0, 1y — displacement (deflection) cross
section with coordinate zy= 0, r,— displacement any cross section.

Governing equation of flexural deformation of the column of variable cross-
section may be written as (of the member is approximated by the following
parabolic function).

2 2 2 3 2
NI* _ NI Mol 0yl o2 2o M 3)

” 2
WA=y ytz) M = Mo~ Elxo Ely, > =70 " TEL,

nzzno—\/_ ; Mg sin(viz, )+( {\/_[——sm(vu )+cos(vu,)]-1}—

y

k EI [\/——s1n(vuz)+t] \/_ J1- Yyl
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. =In(l-v,t.), u, =In(l-y,), v’ =k* /77 =0,25, v’ +0,25=k> /5. (4)

This homogeneous linear differential equation is second-order differential
equations with variable coefficients. The general solution for these differential
equations has analytical solution [6, 7, 8, 17, 18].

The general solution (4) written in form of method of initial parameters.

Was made studies for 5 cases stability of elastic rods with variable cross-
section where columns have elastic support.

Case 1 (Fig. 2(a)). Column has elastic fixed-support for cross section with
maximum dimensions (z=0) and free-end for cross section with minimum
dimensions (z=1).

Boundary conditions are:
kb
M.y, =0, 0,=0y=0, ngn=0, M,y =- B Mo &)

where b, — the width of the base of the column, and %, — the coefficient of

rigidity of elastic fixed base, 1(, — the rotation angle of cross section of elastic

fixed—support.
The factor of elastic fixed-support may be written as:

bg = (ELg /DNy / M) = EL g / (0,516 k). (6)
The combination of boundary conditions (5) and the decision (4) provides

stability loss equation to calculate the critical buckling load of column with
varying cross-section (7).

K2b —Y—y}—tg(”’")ﬂzo. 7
( Er 2 V'Yy ( )
Equation of stability (7) makes it possible to determine the stability factor
and coefficient of effective length. If k. —o0; bg,.—0; we have boundary
conditions for column with varying cross-section with fixed support — free-end.
Stability loss equation (7) gives stability loss equation for column with fixed-
support — free-end
tg(vuy)
2v
For variable cross-section column with fixed support — free-end were
obtained factors effective length in Table 1.

~1=0. (8)

Table 1
Effective length factor for variable cross-section column with fixed-elastic
support and free-end. Case 1, (Fig. 2(a))

Ll Lo 0,99 0,70 0,50 0,30 0,20 0,10
Wy, by, =0 2,0003 | 2,107 2,209 2,366 | 2,491 2,704
W, bp.=0,033 | 2,0669 | 2,169 2,268 2,419 2,54 2,747
Wy, by, =0,33 2,635 2,708 2,779 2,891 2,983 3,145
Wy, bg. =05 2,918 2,981 3,043 3,141 3,223 3,365
Wy, by, =1,0 3,652 3,699 3,746 3,819 3,879 3,985
W, g, =2,0 4,809 4,843 4,876 | 4,928 4,971 5,046
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Case 2 (Fig. 2(b)). Column has elastic fixed-support for cross section with
maximum dimensions (z=0) and pin-ended (articulated) support for cross section
with minimum dimensions (z=1).

Boundary conditions are:

My, =0, O,=0,,
Mo =M, =0, Oyl =0,5k,mb}, Opl =—M o, Mo =-0,5km4b7. (9)

Stability loss criterion to calculate the critical buckling load for column with
varying cross-section may be written:

2 Yy 80
(kb 5 +1) W, +1=0. (10)
Effective length factor for variable cross-section column with fixed-elastic
support and articulated—end is in table 2.

Table 2
Effective length factor for variable cross-section column
with fixed-elastic support and articulated—end
Im/]xo s bEr =0 s bEr =0,5 s bEr =1,0 s bEr =2,0

0,99 0,7009 0,9247 0,9584 1,0023
0,90 0,7177 0,9454 0,9804 1,0263
0,80 0,7389 0,9713 1,008 1,0564
0,70 0,7633 1,0011 1,04 1,0911
0,60 0,7921 1,0361 1,077 1,1319
0,50 0,8271 1,0782 1,122 1,1811
0,40 0,8711 1,1307 1,178 1,2428
0,30 0,9299 1,2002 1,252 1,3245
0,20 1,0164 1,3009 1,359 1,4434
0,10 1,1738 1,4802 1,5503 1,6555
0,01 1,7661 2,1179 2,2225 2,401

Case 3 (Fig. 3(a)). Column has fixed support for cross section with maximum
dimensions (z=0) and articulated elastic support for cross section with minimum
dimensions (z=l). m, — displacement cross section with coordinate z,=l,
displacement of articulated elastic support. Coefficient of rigidity of elastic
articulated support is k,;. Boundary condition are the coefficient of rigidity of
elastic fixed-base.

Mo=mo=0,M,,=0,n,#0, Oy =0, =-M,k,3. (11)

Standard procedures connections equation Boundary condition and the
general solution give the stability loss equation (criterion) to calculate the critical
buckling load of column with varying cross-section. By using factor of elastic
articulated support (6) — b, , was obtained the stability loss criterion:

{ 1 Y—y} ey . (12)

1=k Ibgy) 2] Yy
In table 3 effective length factor for variable cross-section column with fixed-
support and elastic articulated support for bgz =0 ... 3.0 were obtained.
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(@ (b) (©

Fig. 3. Cases of resistance centrally compressed rods with variable cross section on elastic supports:
(a) - case 3; (b) — case 4; (c) - case 5

Table 3
Effective length factor for variable cross-section column with fixed-support and
elastic articulated support for bz;=0 ... 3.0 (case 3)

by
1m/1x0

0,99 0,70091 0,80758 0,99647 1,55882 1,73845 1,901

0,90 0,71772 0,81906 1,00456 1,57401 1,75817 1,926

0,80 0,73886 0,83412 1,01493 1,59273 1,78250 1,957

0,70 0,76330 0,85235 1,02724 1,61390 1,81005 1,992

0,60 0,79213 0,87486 1,04226 1,63827 1,84178 2,032

0,50 0,82708 0,90340 1,06130 1,66702 1,87921 2,080

0,40 0,87112 0,94093 1,08673 1,702122 1,92485 2,1382

Case 4 (Fig. 3(b)). Column has the mobile elastic fixed support with
horizontal springy support for cross section with maximum dimensions (z=0) and
articulated support for cross section with minimum dimensions (z=/). np —
displacement cross section with coordinate z;=0, displacement of articulated
elastic support. &, — the coefficient of rigidity of elastic fixed-base. Coefficient of
rigidity of horizontal springy support is &,,. Boundary conditions are:

QO :Qn :+kr2nO: Ny =0, Mxn =0, (13)
M o =-0,5kmpb%, —MgN+M o +0yl =0. (14)

Recurrent formula for the relationship between the angle of rotation mobile
elastic fixed support and deflection of horizontal springy support is:

0,5k.b>
“MoN+M, 0+ =0, n, Zﬁ'ﬂo (15)
r
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Substitute in equation (16) deflection of horizontal spring support on angle of
rotation for mobile elastic fixed support by formula (19) leads to stability loss
criterion of frame.

K2 (ElLy /D) , 1 V| eOu)
2 2 ) -
0,562k, 1—k> EI o/ (k.,I%) VY,

If k,, —o0; than boundary condition have form (9) and stability loss criterion

0. (16)

(16) converted to stability loss equation of column (10) — case 2.

If k., —0; than stability loss criterion (16) converted to stability loss
equation of column (7), — case 1.

Case 5 (Fig. 3(c)). Column has the mobile fixed support with horizontal
spring support for cross section with maximum dimensions (z=0) and articulated
support for cross section with minimum dimensions (z=/). o — displacement
cross section with coordinate zy=0, displacement of articulated elastic support.
Coefficient of rigidity of horizontal springy support is %, .

If in equation (16) put the condition &, —oo; it gives stability loss criterion of
column for case 5:

Yy | t
—L Sebu) g, (17)
1-k*El o ko) 2 ) VY

If in equation (17) put the condition £,, —oo; than stability loss criterion
column with fixed- support and free-end (7).

Present methodology obtain coefficient the effective length of portal frame to
calculate the critical buckling load of column with varying cross-section.

Portal frame has columns with varying cross-section and rigid frame rafter

with constant cross-section. Columns with varying cross-section of portal frame
is elements, which have boundary condition: column has the mobile elastic fixed

support and articulated support for cross section with minimum dimensions, £, -
the coefficient of rigidity of elastic fixed-base. Coefficient of rigidity of
horizontal springy support is k,., =0.

Critical buckling load on the column with varying cross-section of portal
frame may be calculate by using equation (7) or (16) for k,, —co.

Critical buckling load of frame depends from factor of elastic fixed-support,

the ratio of angle of rotation node joint rafter and column corresponding of
bending which is acting in the node:

, I
_ Elvose Mok _ Elvose Iy (1-z/1)°

b = . oy, =2
Er hy My Ely, hy e W '([(I—sz/l)z

where: M, — bending moment in node, which is acting due to loss stability of

dz, (18)

frame of asymmetric shape; mg; — the angle of rotation node joint rafter and
column, is acting from loss stability steel frame of asymmetric shape; Ay, —
length of column of frame; £ modulus of elasticity of steel; /.y, — maximum
moment of inertia of variable cross-section of column.
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The coefficient v, is the integral parameter of the stiffening cornice units of
the jamming of the column in the cornice units, and determined by integrating of

(18,19), takes into account the cross section of the rafter in determining the
cornice unit rotation angle.

Y, =l -y, —D =20y, DI -y )+ v, b=y, =D (19)
Ty Ty
Performed numerical study of effective length factor of columns with varying
cross-section of portal frame due loss stability of frame of asymmetric shape
Table 4.
Table 4
Effective length factor of column of portal frame ( E1,, / EL o, =1,0;

length of column H=4...8 m), case |

M — ﬂ EIxOstlr /EIxOrhst
Ixost  Irx0 1,0 2,0 3,0
0,999 2,6348 3,18 3,652
0,9 2,671 3,2219 3,7
0,8 2,712 3,27 3,755
0,7 2,759 3,323 3,816
0,6 2,812 3,387 3,8865
0,5 2,876 3,46 3,969
0,4 2,952 3,54 4,07
0,3 3,05 3,61 4,198
0,25 3,112 3,732 4,277
0,2 3,187 3,817 4,373
0,1 3,4135 4,073 4,66

It is also proposed to review the work frame structures with two-hinged
frames of I-section with respect to the passage length to the height of racks of 1:
3 in terms of the spatial loss of stability in the composition of buildings and
structures. The horizontal elements of bond systems should be computed not
only for external transverse loads, but for additional efforts that occur in the
compressed-bent frame widths[61]:

S, =8y + Sk - (20)
where: S — efforts by external loads, S, — additional efforts at buckling frame

of structures.

To find the total value of the load on the brace system it is necessary to
calculate the value of the longitudinal force at unfastening. Since the materials
and methods for determining the factors influence the structure of the whole
structure for the stability of individual diameters practically no numerical studies
have been conducted in the software package ANSYS by using calculation
modules «Static Structural» and «Linear Buckling». Module «Linear Buckling»
allows finding the critical value of the load in the design and getting graphical
chart deformations in various forms of stability loss.
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To obtain data on the critical = = e
load values (Pyuckiing) 11 models with '
different number of frames and
brace systems of structures have
been built and designed.
Computational models can be
divided into the following main
groups:

- Frames without brace system;
- Frames with brace systems on
the building ends. N J J

This  distribution  calculation : =
models performed are aimed at
determining the effect of different
types of brace systems or their
absence on individual frames and
building stability as a whole.

Let us consider the calculation of
the results and analyze deformed
buckling diagram of the building s
frame shown in Figure 4 and
Figure 5.

Without brace system in the
structure, buckling of unit frame
leads to deformations of other
frames, namely:

- deformation of the elements of
restraint; . - -

- buckling of other major load- e o .
bearing elements of the
building structure.

For the structures with bracing
system at the ends, shape of buckling of a single frame is different: the buckling
of the frame occurs by one half-wave sine wave between points of restraint from
the plane. The value of the critical load on the system is increased by 25% in
comparison with a similar system without constraints.

These results demonstrate the necessity of the calculation of brace system not
only for the action of the external loads effect, but for the perception of
additional lateral forces [Sg.] to provide the necessary rigidity and overall

0.000 5.000 10,000 {rm)
1

2.500 7.500

Fig. 4. Buckling shape of the frames in the
structure without brace system

Fig. 5. Buckling shape of the frames in the
structure with brace system on the ends of building

stability of the entire building.
To facilitate iterations in the software package, the critical load is calculated
according to the equation [62]:

Pbuckling = Lactual © >“’ (28)
Fyyexiing — critical load; £, — actual load; A —load factor (load multiplayer).

Figure 6 shows depending A of the number of frames for structures without
brace systems, and with brace systems at the ends of the building.
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Figure 6 clearly demonstrates the impact spatial stiffness of building structure
on the critical load for a particular frame. The difference between the critical
load values for different layout options ranges from 16% (for structures with 6
frames) to 67% (for structures with two frames).

6

5 -_-______-------
r=-

»”° i 54

.
caseetet?
vet

LOAD MULTIPLYER [A]
\

N
IS
EN

NUMBER OF FRAMES IN THE STRUCTURE
## ¢+ Structure without braces = e Structure with bracing system

@ nit frame with rigid restraint

Fig. 6. Graph of the relationship between the critical load factor and number of frames in the
longitudinal direction of the building

Conclusions. Buckling of a portal frame is very important problem of design
steel constructions, composed of members with variable cross-section.

In this paper, study the elastic stability of the column with of variable cross-
section.

For portal frames is presented methodology to determine critical load and
effective length factor for buckling of a frame with tapered and with prismatic
columns.

The buckling of columns with varying cross-section of portal frames results
in the stability loss of frame asymmetric shape or symmetric shape.

The buckling columns with varying cross-section of portal frame causes the
necessity to consider cases of buckling columns with the mobile elastic fixed
support with horizontal springy support for cross-section with maximum
dimensions z=0, and articulated support for cross-section with minimum
dimensions, z=1.

Critical buckling load of frame depends on the factor of elastic fixed-support
that in its turn depends on the ratio of joint rafter and column node rotation angle
corresponding to bending acting in the node.

This simple method in the first design of steel frame makes it possible to
obtain effective length factor of column variable cross-section of portal frame.

The formulation of the problem is based on the exact solution of the
governing equations for buckling.
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Binux C.I, Binux A.C., Hinosa T.O., llInunoa B.3., [{ionun €.1.
CTIMKICTh CTAJIEBUX PAM I3 IBOTABPIB I3 3SMIHHOIO BUCOTOIO CTIHKHA

IpencTaBieHoO IOCIHIKEHHS CTIMKOCTI CTaJeBUX MOPTAILHUX paM 3 JBOTAaBPIiB 3i 3MiHHOIO
BUCOTOIO CTIiHKH. 3aJIeKHO BiJl JKOPCTKOCTI BY3JiB 1 yMOB 3aKpilUICHHS €IEMEHTIB B paMax
JIOCJIIIKEHO CTIHKICTh KOJOH. [IpONOHYEThCS MiAXi/ U1 BU3HAYCHHS CTIHKOCTI paM 4epe3 CTiHKiCTh
KOJIOH Ha IpPYXHHX onopaxX. JKOpCTKiCTb BY3IIB i IPY>KHICTh ONOP BH3HAYA€ThCS i3 CTATHYHOIO
PO3paxyHKy paMH. PO3rIsHYTO I'ATh Pi3HHX BHUIIAJKIB CTIKOCTI IPYKHHUX CTPUXKHIB IIPU Pi3HHX
KpailOBUX yMOB 3aKpiIUICHHS KOJOH Ha HPYKHUX omopax. IIpoBefeHO 4YHCEeNbHI JOCIiIKCHHS
KOe(iI[i€HTIB PO3paXyHKOBOI JOBKHHH €JIEMEHTIB MOPTAJIbHAX paM IpU 3MIHHOCTI Iepepisy i
JKOPCTKOCTI KOJIOH. PO3BMHEHMI MiXiZ 10 BU3HAYCHHS CTIMKOCTI €JIEMEHTIB paM 3 IUIOLIMHU pam
3aJIeKHO BiJl MiJIaTIMBOCTI CHCTEMH B'SI31B, MPOBECHUI aHAII3 CTIHKICTh OYAiBII 3 KOMIT'IOTEPHUM
MOJICIIIOBAaHHSM i 3 00UHCICHHIM Koe(ilieHTIB CTifiKoCTi, ()akTOpy BILUIMBY CHCTEMH B'S3iB paMH Ha
CTIfKiCTh PHTeIIB 3 INIONUHY IOPTATbHUX PaM.

KorouoBi cioBa: 3MiHHe INOIepedHUH Iepepis; HPYXKHI ONOpH; e(eKTUBHA pPO3PaxyHKOBA
JIOBJKHHA, KOe(hilieHT pO3paXyHKOBOI JIOBXKUHHU KOJIOH paM, BUTHH paMH, (paKTOp HaBaHTAXKECHHSL.

Bunvix C.I., Bunvix A.C., Hunosa T.A., [LInunoa B.3., Lfionun E.I.
YCTOMUYMBOCTH CTAJBHBIX PAM C JIBYTABPOB C IEPEMEHHOM BbICOTOMN
CTEHKMN.

IIpencTaBieHO HMCCICAOBAaHUE YCTOHYMBOCTH CTalbHBIX IOPTAJbHBIX PaM M3 JIByTaBPOB C
TIEPEMEHHON BBICOTOW CTEHKH. B 3aBHCHMOCTH OT JKECTKOCTH Y3JI0B M YCJIOBHH 3aKpeIUICHHs
JJIEMEHTOB B paMax MCCIe0BaHa yCTOMYMBOCTh KOJIOHH. IIpemiaraeTcs mMoaXo JJisi OIpenesICHUs
YCTOMYMBOCTH paM 4yepe3 YCTOHYMBOCTH KOJIOHH Ha yNpyrux onopax. JKecTkocTs y3JI0B U yIpyrocTb
OIop OmpeeNsieTcs M3 CTaTHYECKOro pacuera paMbl. PacCMOTpeHO MsATh pa3iM4HBIX CiIydaeB
YCTOWYMBOCTH YIPYTUX CTEPXKHEH NpPH Pa3IMYHBIX KpPAeBBIX YCJIOBHH 3aKpCIUICHUS KOJOH Ha
ynpyrux omopax. IIpuBeaeHbl YHCICHHBIC HCCICAOBaHUS KOI(DPHUIMEHTOB PAaCUYCTHOM JJIMHBI
2JIEMEHTOB HOPTAIBHBIX paM IIPH MEPEMEHHOCTH CEYECHUS M KECTKOCTH KOJOHH. Pa3BHUT moaxon k
OIPE/ICIICHUIO YCTOWYMBOCTH JIEMEHTOB PaM M3 IIJIOCKOCTH PaM B 3aBUCHMOCTH OT MOJATIUBOCTU
CHCTEMBI CBsI3€il, IPOBe/IeH aHaIu3 yCTOWYMBOCTH 3/1aHHS ¢ KOMIIBIOTEPHBIM MOJEINPOBAHUEM U C
BBIYHMCIICHHEM KOX((UIIMEHTOB YCTOWYHMBOCTH, (paKTOpa BIMSHHS CHUCTEMBI CBsI3¢d paMbl Ha
YCTOHUMBOCTB pUTreseit U3 MIOCKOCTH IMOPTAJIBHBIX PaM.

KaioueBble cJIoBa: IEPEeMEHHOE IIONEPEYHOE CEUeHUe;, ymnpyrue omnopsl; 3ddexTuBHas
pacderHas JuIHa, K03 OHIUEHT pacueTHON JUTMHBI KOJIOH paM, U3ru0 pambl, (HakTop HArpy3KH.
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