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Abstract. The stability of an oil reservoir with real imperfections of a wall under the joint action
of axial compression and surface pressure is studied using a program complex of finite element
analysis. To determine the permissible range of fail-safe operation of the reservoir, irregular
imperfections of the middle wall surface are simulated as ratios of the buckling forms with different
maximum amplitudes obtained in solving the problem of loss of stability by the Lanczos method. The
stability of the shell with real and simulated imperfections of the wall is investigated using the
nonlinear static problem by the Newton-Raphson method. Critical ratios of axial compression and
surface pressure are determined to ensure overall stability of the reservoir wall. The region of failure
on the stability of the oil reservoir with real imperfections is obtained.
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To fully describe the general laws of the stress-strain state of shells with
parameters that depend on many factors, the apparatus of linear differential
equations turns out to be insufficient, because the most interesting and
characteristic features of nonlinear systems do not fit into its framework. They
include not only a quantitative change in the parameters of the system in space,
related to the magnitude of the initial imperfections and the way the load is
applied, but also the qualitative changes that lead to the emergence of critical
states, the branching of new solutions and the loss of stable equilibrium.

Mathematical methods that make it possible to investigate nonlinear
differential equations are too complicated and laborious to study complex
nonlinear systems with multivariant parameters. In those cases when the
properties of the shell and the loads acting on it depend on several factors, the
shell can have a large number of critical states, the dimension of which is one
less than the number of independently varying variables. The problem of
constructing such a variety in the general case is extremely complicated,
therefore, in the theory of differential equations it is often replaced by the
problem of finding only a limited amount of qualitative information concerning
the analysis of the quantitative change in the properties of a system when its
parameters are varied. The problems of non-linear stability of deformable
systems in a number of cases have features that are sensitive to irregularities in
shape [2, 6], uneven of the load application, shortcomings in manufacturing
technology, and heterogeneity in the physical characteristics of materials.

The presence of small imperfections in the shape of the shell can significantly
reduce its critical load. This feature is of great practical importance and therefore
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this work is aimed at investigating the influence of initial deflections. One of the
approaches of the study proposed by V.T. Coiter [7] is to apply an asymptotic
analysis based on the general theory of supercritical behavior. In this case, the
sensitivity to imperfections is described as a measure of the initial postcritical
behavior and the determination of the first zero coefficient in the power law of
the load parameter on the amplitude of stability loss form. Coiter's method has
become widely used in computational practice, but its usage imposes a strict
limitation on the magnitude of imperfection and its shape. Another approach
consists in a direct analysis of the nonlinear deformation of a shell with a curved
shape of the middle surface based on one of the grid methods of discretization of
the resolving equations. But this method has not received distribution because of
the significant expenditure of computer time.

The development of new ideas in the understanding of nonlinear mechanics
was greatly aided by the appearance of computers. Their use for nonlinear shell
analysis has now reached such a level that it makes it possible to investigate the
global behavior of thin-walled systems, including the problems of constructing a
load trajectory in a given region of states, establishing buckling points and so on.

At the same time, for practical tasks, it is necessary to analyze various types of
imperfections in shells that are characterized not only by the presence of a common
continuous initial background of imperfections of limited amplitude but also by
specific types of deflections of medium and large amplitudes caused by technological
reasons: the manufacture of panels from sheet metal, their welding, mounting by
welding to them discrete ribs, which have their imperfections in shape, etc.

1. Taking into account the actual geometry of the reservoir wall in the

study of stability

The oil tank is located in the south of Ukraine and is a cylindrical shell with a
radius of ch:19,978 m, height H =17,88 m. The thickness of the shell wall

differs in height and acquires a value of 7,63 mm to 15,98 mm. The wall of the
tank is made of steel with mechanical characteristics: FE :2,06-10“ Pa, n=0,3,

p =7800 kg/m’. At the stage of manufacture, transportation and operation in the

wall of the reservoir imperfections of form arose. As a result of the theodolite
survey, actual radial deviations of the intersection points of generatrixes with
horizontal boundaries of the shell belts were obtained. The reservoir calculation
model is constructed in a finite element program complex in a cylindrical
coordinate system. The initial deviations of the generatrix were added to the
corresponding coordinates of the ideal surface and spline curves were
constructed from the modified coordinates and then spline surfaces. The shell
wall model with imperfect geometry is represented as a triangular finite element
grid, and the number of model nodes is greater than the number of initial points
of the envelope generators. To visualize the actual imperfections, a special
program has been created that allowed the radial deviations of all points of the
generatrixes to be represented on a certain scale and turn them into deviations of
nodes of the finite element model in the Cartesian coordinate system. In Fig. 1
shows the finite element model of the reservoir in different planes, as an example
of visualization of actual wall imperfections in a 1:20 scale.
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(b)

Fig. 1. Finite element model of an imperfect shell: side view (a), top view (b)

The problem of stability of the imperfect shell consisted in determining the
critical values of axial compression and surface pressure separately for each load
and with their combined action. The procedure of solving the non-linear static
problem using the modified Newton-Raphson method is applied. Fig. 2 shows
the loading curves of the shell surface pressure for three nodes, in which
maximum displacements were observed at different loading stages. Surface

pressure was supplied in the form ¢ =pBq.., where g° =1257,4N/m’ — the
critical load value for a shell with an ideal wall shape.

0,067

Ersen 82|7‘
0.081
0.0551 /
0.04
0.04: .
EETET P
0 -
il
0.0247 zem 1731 5
T~ Yzen 1725
oot —
e =i
0.00845 — e
S 7#;:;:_’_;
3,000
00476 0105 0162 02z 0.277 0.3% 0.332 0.443 0.507 0.564 0622 0674

Fig. 2. Load curves for non-linear calculations

The buckling of the shell, taking into account the imperfections of the wall,
occurred at B, =0,679. The critical value of the surface pressure was
q., =853,77N/m’. The stress-strain state of an imperfect shell with loss of
stability is shown in Fig. 3.

(b)
Fig. 3. Buckling of the shell under the action of surface pressure:
state of stress (a), form of deformation (b)
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The maximum equivalent stress in the wall elements from the outside of the
shell (Plate Top VonMises Stress) was 55,235 MPa, which is lower than the
design resistance of steel R, =240 MPa.

The results of an investigation of the stability of the tank imperfect shell
under axial compression, which was given in the form P:BPCC;, where
PY =430597,8 N/m is the critical load value for a shell with an ideal wall

shape, are shown in Fig. 4 and 5.
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Fig. 4. Load curves of an imperfect shell by axial compression

Buckling of the shell
taking into account wall
imperfections  occurred
at B, =0,145. The

critical value of axial

compression was

P, =62436,68 N/m.

The maximum

@) (®) equivalent stresses on the

Fig. 5. The loss in stability of an imperfect shell under axial outside of the shell (Plate
compression: state of stress (a), form of deformation (b) Top VonMises Stress)

for axial compression
were 53,732 MPa, which is less than the design resistance of steel
R, =240 MPa.

Investigation of the reservoir stability in the combined action of axial
compression and surface pressure is of particular interest. The combined load is

given in the form [aP);(1-a)g" ], where a=[0,0,3;0,5,0,7;1] is the
dimensionless combination factor. As a result of solving the nonlinear problem
of statics, the coefficients of the critical combined loading 3, are determined,
which allowed us to determine the critical values of axial compression and
surface pressure when they act together on an imperfect shell by formulas:

[Pcr;qcr]:[[}”owc“[}” (l—oc)qg,]. Fig. 6 shows the stress-strain state of a

ro
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reservoir with real shape imperfections for three critical combinations of loads
0,201[0,3£:0,7¢), |, 0,362[0,5P7:0,54), | and 0,158] 0,7P):0.3¢, |.

Table 1 illustrates the values of the critical combinations of axial
compression and surface pressure [PL,,;qL,,] for different values of the load

combination factor o .

Table 1
o [OLPE? S(1-0) gy ] . (i) | B, (P340, ] > umsnm?)
0 [0; 1257.4] 0,679 [0; 853,77]
0,3 [143517,21;977,87] 0,362 [51950,36; 353,97]
0,5 [252811,93; 738,24] 0,201 [50711,55; 148,08]
0,7 [362908,42; 454,17] 0,158 [57244,45; 71,64]
1 [430597,8; 0] 0,145 [62436,68; 0]

(3a)

Fig. 6. The loss in stability of the reservoir with real imperfections in shape under combined loading

0,362[0,3P"; 9.0,5¢".1(2)and 0,158[0,7P":0,3¢".] (3): state of

cr?

0,7¢>.1 (1), 0,201 [0,5P

cr?

stress (a), form of deformation (b)
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The maximum equivalent stresses on the outside of the shell (Plate Top
VonMises Stress) for the three critical load combinations 0,362[0,31@3;0,7q3} ,

0.201[0,5P5:0,5¢5, | and 0,158/ 0,7£0:0.3¢], | respectively were 75,281

MPa, 99,201 MPa and 69.360 MPa, and were less than the design resistance of
the steel Ry =240 MPa.

For a tank with real wall shape imperfections, a stability diagram is
constructed, load ranges are established, in which the conditions for ensuring
general stability are realized under the combined action of axial compression and
surface pressure. The region of stability of the shell is bounded by the curve of

the equilibrium state and

P, the coordinate axes
o (Fig. 7).
0 M The reliability of the
02 e obtained results is
010 \\ confirmed with the help of
L .
oo < theoretical formulas [2]
o8 ~ and formulas for practical
el ~ calculations [14] of the
oz ‘\ q. critical stress in the shell,
’ a 0,10 020 020 0490 050 080 070 q_fr Wthh 18 Caused by the
action of uniform
Fig. 7. The region of stability of the reservoir with real compression parallel to the
imperfections in shape generatrixes and at an

external uniform pressure.

2. Stability of the reservoir with simulated irregular imperfections of the

shape under the action of a combined load

The use of analytical methods for solving the problem of stability determined
the form of imperfections as trigonometric functions [1], which significantly
narrowed the range of studies. With a separate action of surface tension or axial
compression, the initial imperfection in many cases was adopted as
corresponding buckling forms, because such a model of regular imperfections
had the greatest influence on the stability of the shell. Under the action of
combined loading, the problem of modeling the initial imperfections of the shell
is more complicated. But the availability of modern computing systems allows
you to specify imperfections of the shell wall in an arbitrary form.

This article propose a numerical approach to the determination of the stability
of cylindrical shells with irregular imperfections of the shape under the
combined action of axial compression and surface pressure [4]. The approach
made it possible to model imperfections in the form of combinations of shell
buckling forms, which were obtained a separate action of axial compression and
surface tension, to assess the impact of imperfections on the critical values of the
combined load and to determine the stability region of the reservoir with variable
wall thickness when acting combined loading.

The computational model is formed with the help of a finite element analysis
computational complex [17] for a shell segment containing 425 nodes and 768
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flat triangular elements. In the nodes of the boundary generators of the segment,
displacements along the circle and rotation angles around the radius and
generatrix are forbidden. The imperfection of the wall is represented as
combinations of a perfect shell buckling forms under the separate action of axial

compression and surface pressure: [yD po(l= 7D g ) where

¥=[0,0,3;0,5;0,7;1] — the dimensionless coefficient, ®, and ® , — the vectors
of the buckling forms of the perfect shell under the action of axial compression
and surface pressure, respectively. A program, in which the components of the
vectors of the buckling forms are added to the corresponding coordinates of the
middle surface of the perfect shell is created in such a way that the maximum
amplitude of the initial imperfection takes on the values [0,5¢,::; fuin; 1,5tmin;
2tyin), wWhere ¢ =7,63mm is the minimum wall thickness. The combined
loading (see Section 1) is specified in the form of combinations of axial

compression and surface pressure [(xPc(z;(l—OL)qCOr], where o — the

dimensionless combination factor, acquires a value [0; 0,3,05;0,7; 1] .

The solution of the nonlinear equilibrium equations is carried out using the
modified Newton-Raphson method. The loss of stability of the shell occurs with
a critical combination of axial compression and surface pressure:

[P0 ] = |:BC,,OCPC?.;BC,. (l—oc)qg,.} where B, is the critical load parameter,

the value of which is given for a cylindrical shell with imperfections of different
shapes and maximum amplitude A,  in Table 2.

Table 2
A o Critical load parameter 3 or
- y=0 | y=03 | y=05 | y=07 | y=I
0 0,742 0,795 0,846 0,866 0,934
0,3 0,485 0,5 0,45 0,45 0,4
0,5¢ 0 0,5 0,55 0,55 0,5 0,45 0,4
0,7 0,6 0,6 0,55 0,5 0,45
1 0,8 0,65 0,6 0,55 0,5
0 0,601 0,626 0,682 0,754 0,9
0,3 0,375 0,3 0,3 0,269 0,276
toin 0,5 0,4 0,35 0,3 0,282 0,3
0,7 0,45 0,35 0,3 0,3 0,3
1 0,619 0,4 0,35 0,32 0,33
0 0,5 0,524 0,6 0,702 0,842
0,3 0,3 0,25 0,25 0,25 0,25
L5t 0,5 0,3 0,25 0,25 0,25 0,253
0,7 0,35 0,264 0,278 0,274 0,264
1 0,5 0,3 0,297 0,289 0,284
0 0,4 0,45 0,486 0,517 0,821
0,3 0,25 0,2 0,2 0,21 0,243
2t . 0,5 0,25 0,206 0,215 0,25 0,25
min
0,7 0,3 0,25 0,25 0,25 0,268
1 0.3 0.28 0.27 0.27 0.275
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It can be seen that the influence of the form of the wall imperfection of a
reservoir with variable thickness is not proportional to the corresponding
combinations of loads. That is, the critical load parameter is not minimal when
the form factor of the imperfection and the load factor coincide, which is typical
for cylindrical shells with a constant wall thickness.

To determine the stability region of a reservoir with simulated wall
imperfections, critical ratios of axial compression and surface pressure in the

form [PW/PC(Z;qC,./qg.J are determined. Table 3 presents the results of

calculations for a shell with imperfections of various shapes and amplitude
A

max
Table 3
A, o Combined load critical value [P, /Pc(i; q. /qgr]
Yy=0 v=03 Y=0,5 vy=0,7 y=1
0 [0:0,742] [0:0,795] [0:0,846] | [0:0.866] [0,0,934]
0.3 [0,146;0,34] [0,145;0,35] | [0,135;0,315] |[0,135;0,315] | [0,12;0,28]
0, Stmjn 0.5 [0,275;0,275] [[0,275;0,275]| [0,25;0,25] |[0,225;0,225] [0,2;0,2]
0.7 | [042:0.18] | [0.42:0.18] | [0.385:0,165] | [0.35:0.15] |[0,315:0,135]
1 [0,8:0] [0,65:0] [0,6:0] [0,55;0] [0,5;0]
0 [0:0,601] [0:0,626] [0:0,682] | [00.754] [0:0.9]
03 | [0.113:0.263] | [0,09:0.21] | [0.09:0.21] [[0.081:0,188] | [0,083:0,193]
Lnin 0.5 [0,2;0,2] [0,175;0,175]| [0,15;0,15] |0,141;0,141] | [0,15;0,15]
0.7 | 0.315,0.135] |[0,245:0,105]| [0.21;0,09] |[0.21;0,09] | [0.21;0,09]
1 [0,619:0] [0,4:0] [0,35:0] [0,32;0] [0,33;0]
0 [0:0,5] [0:0,524] [0:0.,6] [0:0,702] [0;0,842]
03 | [0,09:021] [[0,075:0,175]] [0,075:0,175] [[0,075:0,175] | [0,075:0,175]
L5 | 05 | 10,150,151 [10,125;0,1251 ] [0,125;0,125] [[0,125;0,125] | [0,127;0,127]
0.7 | [0.245:0,105] |[0,185:0,075] | [0,195:0,083] ][0,192:0,082] | [0,185:0,079]
1 [0,5;0] [0.30] [0297:0] | [0,289;0] [0.284:0]
0 [0:0.4] [0;0.45] [0:0.486] | [00.517] [0:0,821]
03 | [0,075:0.175] | [0.06:0.14] | [0.06:0,14] [[0,063:0,125] | [0,073:0,17]
2t | 0.5 | [0.125:0,125] [[0,103:0,103] | [0,108;0,108] [[0.125:0,125] | [0,125;0,125]
07 | [021;0,09] ][0,175;0,075]] [0,175:0,075] [[0,175:0,075] | [0,188:0,08]
1 [0,3:0] [0,28:0] [0,27:0] [0,27:0] [0,275:0]

Fig. 8 shows the stability regions of a reservoir with irregular imperfections
that lie between the coordinate axes and the equilibrium curves. The effect of
imperfections on the stability region is not proportional to the corresponding
combinations of loads. It can be seen that the stability regions are different for a
shell with various forms of irregular imperfections.

We consider that the stability region of the shell with the corresponding
maximum amplitude of imperfection of the wall is the region that lies between
the coordinate axes and the curves with the minimum values of the critical loads
combinations presented in Table 4 and in Fig. 9.
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Fig. 8. Diagrams of reservoir stability regions with imperfections of different form:

1-y=0;2-y=0,3;3-vy=0,7;4-7y=0,5;5-v =1 and different maximum amplitude:
() -1,5¢

min

(@)-0,5¢,,, 5 (b) -1

min > (d) - 2l‘min

Table 4
Minimum combined load critical value [Pcr o qC, / qm ]mm
0’ 5l‘min tmin 17 5l‘min 2l‘min
[0; 0,742] [0; 0,601] [0; 0,5] [0; 0.4]
[0,12; 0,28] [0,081;0,188] [0,075; 0,175] [0,06; 0,14]
[0,2;0.2] [0,141; 0,141] [0,125; 0,125] [0,103; 0,103]
[0,315; 0,135] [0,21; 0,09] [0,185; 0,079] [0,175; 0,075]
[0,5; 0] [0,32; 0] [0,284; 0] [0,27; 0]
. 2
Fig. 9(a) shows the curves of the =
minimum critical ratios of axial - ‘
. 05
compression and surface pressure of 05t
the imperfect shell. e -
It's obvious that an increase in 0 L :
the maximum  amplitude of o A i
imperfection leads to a decrease in &\
oy . 01
the stability region of the shell. a “‘*i\‘“\\\ 9.
o
' o 0,1 0z 03 04 05 0f o7 08 q"‘

Fig. 9. Curves of critical axial compression and
surface pressure ratios of the reservoir with
imperfections as combinations of buckling forms
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3. Determination of failure region in stability of the reservoir with real

wall imperfections

One of the basic concepts of theory of structural reliability is the concept of
failure [1, 3]. A failure is a partial or total loss of system quality. In construction
mechanics, this notion corresponds to the notion of a limit state. For practical
purposes, it is often necessary to assess the probability that the system's response
will be in the field of failure-free operation. Then the reliability R of the system
is defined as the probability of finding the element of the system reaction vector

S(7) in the admissible region € during the time interval [ 0<t< t] :
R=P,.=Prob[S(1)eQ);0<1t<t|.

suc
The probability of failure is a addition to the reliability function:
Pfail ()=1-Fy..

In our case, the failure of the shell in stability is considered, because this type
of failure for thin-walled shell structures is more dangerous. For various
combinations of axial compression and surface pressure, there is an area that
characterizes the ability of the oil reservoir to perceive the combined load and
not lose stability. In the work of graphical representation of shell failure-free

operation region £, we can consider the stability region of the reservoir with
the maximum permissible amplitude of the imperfection A, =2¢, (Fig. 9).
Reliability of fail-safe work of building constructions for limit states is
P, =99,9 % [1]. It is the probability that the reservoir's reaction vector S(t)
will stay in the permissible region €, for a time interval [ 0<t< t] .

Let's show in Fig. 10 the stability region of the tank with real imperfections
of the wall, which is between curve 1 and coordinate axes, and the admissible
area of failure-free operation region €2,, which is limited by curve 2 and
coordinate axes.

Let's show in Fig. 10 the stability region of the tank with real imperfections
of the wall, which is between curve 1 and coordinate axes, and the admissible

5 area of failure-free operation,
20 which is limited by curve 2
040 and coordinate axes. We see
0 that an additional area of
o % failure arose due to the lack
o of a g.enera1. Stablll.ty of the
wall in this region. The
015 .. . . .
] additional region of failure is
0,10 +— .
Q, \ 2 1 28.2% of the of the failure-
o ] g,  free  operation  region,
M 0w om om om om om om om 4. therefore the reliability of the
Fig. 10. Curves of critical ratios of axial compression and ,Stablhty 9f the tank with real
surface pressure of a tank with imperfections: 1-real; 2 - imperfections decreased to
modeled as forms of loss of stability P =717 %.

To ensure the overall stability of the tank wall, it is recommended to
introduce additional stiffening elements (ribs, rings) into the structure.
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Conclusion. The developed numerical technique with application of the

program complex of finite element analysis procedures allowed to investigate the
stability of the oil reservoir with actually measured imperfections of the wall
shape under the joint action of axial compression and surface pressure; get an
feasible failure-free operation region of the reservoir with modeled imperfections
of the form as relationships of buckling forms; graphically represent the failure
region in stability of the reservoir with real imperfections of the wall.
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Bazhenov V.A., Lukianchenko O.0., Kostina O.V.
DEFINITION OF THE FAILURE REGION OF THE OIL TANK WITH WALL
IMPERFECTIONS IN COMBINED LOADING

The presence of defects in real oil tanks plays an essential role in their accident-free operation. The
majority of theoretical and experimental studies are devoted to the investigation of the effect of defects
in the form of initial imperfections of the shape of thin shells on the carrying capacity and stability.
Initial imperfections are the main factor that reduces the critical load. The first of the studies of the
sensitivity of the critical load to the initial geometric imperfections of the form was performed by L.
Donnell. A special role in the development of the theory of stability of imperfect shells was played by
the asymptotic method of V.T. Coiter, which is used in J. Hutchinson. I.Arbosh, Ch.Bebkok,
J.C.Amazigo and others research. Most of these papers were carried out on the assumption of linear
critical behavior of the solution. In the future, for a detailed account of the imperfect geometry of
nonlinearly deformed shells under an arbitrary load action, the researchers began to apply the synthesis
of the reduction method and the Coiter method. At present, there are modern computational complexes
that allow us to introduce initial imperfections directly as geometric parameters of the middle surface of
the shells. The solution of the nonlinear problem in such formulation can more fully reflect the influence
of the initial imperfections on the decrease of the critical load. However, the problem of determining the
permissible failure-free operation region of tanks with real imperfections of the shape under the action of
combined loading remains important.

The stability of an oil reservoir with real imperfections of a wall under the joint action of axial
compression and surface pressure is studied using a program complex of finite element analysis. To
determine the permissible range of fail-safe operation of the reservoir, irregular imperfections of the
middle wall surface are simulated as ratios of the buckling forms with different maximum amplitudes
obtained in solving the problem of loss of stability by the Lanczos method. The stability of the shell with
real and simulated imperfections of the wall is investigated using the nonlinear static problem by the
Newton-Raphson method. Critical ratios of axial compression and surface pressure are determined to
ensure overall stability of the reservoir wall. The region of failure on the stability of the oil reservoir with
real imperfections is obtained.

Key words: cylindrical shell, imperfection of shape, stability, combined loading, failure region.

Baoicenos B.A., JIyk anuenxo O.0., Kocmina O.B.
BU3HAYEHHSA OBJIACTI BIIMOBH HA®TOBOI'O PESEPBYAPA 3
HEJOCKOHAJOCTAMMU CTIHKA ITPU KOMBIHOBAHOMY HABAHTAKEHHI
JlocnipkeHa cTiKicTs HadTOHAIMBHOIO pe3epByapa 3 PealbHIMU HEJOCKOHAIOCTSIMU CTiHKU IIPU
CYMiCHIH Jii OCbOBOrO CTHCHEHHS 1 IIOBEpXHEBOro THUCKy. I[loOymoBana jgomycrtiMa o00JacTh
0e3BiIMOBHOI poOOTH pe3epByapa 3i 3MOACIBOBAHMMH HEIOCKOHAIOCTAMH (OpMH Yy BHIIISIL
crionyueHb (OpM BTpATH CTIHKOCTI; TpadiyHO BU3HAYEHA 00JACTh BiIMOBH 3a CTIMKICTIO pe3epByapa 3
peanbHEMU HEJOCKOHATIOCTSIMH CTiHKH.
KaiouoBi ciioBa: mutiHIpuuHa 000J0HKA, HEJOCKOHATICTh ()OPMH, CTaOiIbHICT, KOMOIHOBaHE
HaBaHTa)KEHHS, 00JIaCTh BiIMOBH.

Baoicenos B.A., Jlykvanuenxo O.A., Kocmuna E.B.
ONPEJAEJEHUE OBJACTU OTKA3A HE®TSHOI'O PESEPBYAPA C
HECOBEPHIEHCTBAMU CTEHKHW NP1 KOMBUHUPOBAHHOM HAT'PYKEHUU
HccnenoBana yCTOMYMBOCTD HETIHOIO pe3epByapa ¢ peajlbHbIMU HECOBEPLICHCTBAMU CTCHKH IIPU
COBMECTHOM JICHCTBUH OCEBOT'0 CXKATHS U ITOBEPXHOCTHOTrO JaBiieHus1. [TocTpoeHa pormycriuMas 001acTh
0e30TKa3HOM paboTBl pe3epByapa €O CMOJACIMPOBAHHBIMU HECOBEpIICHCTBAMH (OpPMBI B BHJIE
KoMOuHaImit popM 1motepu ycToiuMBOCTH; rpaduuecku ornpeeaeHa 00JacTh 0TKa3a M0 YCTOMYHBOCTH
pe3epByapa ¢ pealbHbIMH HECOBEPIICHCTBAMHU CTCHKH.
KaroueBble ci0Ba: OWIMHApUYECKas 000J0YKa, HECOBEPUICHCTBO (DOPMBI, YCTOWYHBOCTH,
KOMOMHHMpOBaHHAs Harpy3ka, 00JIacTh OTKa3a.
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basicenos B.A., Jlyk’awuenxo O.0., Kocmina O.B. BuzHadeHHs o6jacTi BiaMoBH
HapTOBOro pe3epByapa 3 HEJOCKOHAJOCTAMH CTiHKH TP KOMOIHOBaHOMY
HaBaHTaxeHHi // Omip MarepiamiB i Teopist copyx: Hayk.-Tex. 30ipH. — K.: KHYBA,
2018. — Bum. 100. — C. 27-39.

Jocnioscena cmitikicny HA(DMOHAIUBHO20 Pe3ep8yapd 3 PealbHUMU HEeOOCKOHATOCHAMU
CMIHKU NpU CYMICHILL O 0Cb08020 CIUCHEHHS I No8epxHeao2o mucky. 1lobyooeana donycmuma
obnacmb 0e36i0MOBHOI pobomu pe3epsyapa 3i 3M00eNbOBAHUMY HEOOCKOHANOCAMU (OPMU Y
8una0i cnomyuens opm empamu cmitikocmi; pagiuno eusHaveHa o6nacmb GioMOBU 34
CIIELIKICIMIO Pe3epeyapa 3 peaibHUMU HEOOCKOHWIOCHAMU CIIIHKU.

Tabmn. 4. In. 10. Bi6miorp. 17 Ha3s.

Bazhenov V.A., Lukianchenko O.O., Kostina O.V. Definition of the failure region of the
oil tank with wall imperfections in combined loading / Strength of materials and theory

of structures: Sci.&Tech. Collected Artcl. — K.: KNUBA, 2018. — Issue 100. — P. 27-39.

The stability of an oil reservoir with real imperfections of the wall under the joint
action of axial compression and surface pressure is studied. An admissible region of
trouble-free operation of the reservoir with modeled imperfections of the form in the form
of combinations of forms of stability loss is constructed, graphically determined the area
of failure in the stability of the reservoir with real wall imperfections.

Tabl. 4. Fig. 10. Ref. 17.

basicenos B.A., Jlykvanuenxko O.A., Kocmuma E.B. OnpenejieHue 00JacTH 0TKa3a
He()TSIHOTO pe3epByapa ¢ HeCOBEPLIEHCTBAMH CTEHKH NPH KOMOHHHUPOBAHHOM
Harpy:xeHnu // CopoTUBICHNE MaTEPHAIOB U TEOPHUSI COOPYXKEHHIH: HAyIHO-TEX. COOpH.

-K.: KHYCA, 2018. - Bem. 100. - C. 27-39.

Hccneoosana ~ ycmouuusocmv — Hepmanozo  pezepgyapa € peanbHbIMU
HecosepuieHcmeamu CMeHKu Npu  COBMECHOM — OeliCmeUU 0Ce8020  CHCAMUs U
nogepxnocmmnozo oagnenus. Ilocmpoena Odonycmumas obracmv Oe3omrazHol pabomul
pezepsyapa co cMOO0enupOSAHHLIMU HeCo8epuieHCmBamu Gopmsl 8 ude KOMOuHayuil
¢opm nomepu ycmouuusocmu; epaguuecku onpedeiena 001ACMb OmMKA3A  NO
ycmouuusocmu pe3epeyapa ¢ peanbHblMu HeCO8EePUEHCINEAMY CIMEHKU.

Tab6mn. 4. V. 10. bubauor. 17 Hass.
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